如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设.
(1)试用表示的面积;
(2)求八角形所覆盖面积的最大值,并指出此时的大小.
(1);(2)时面积的最大值为.
解析试题分析:(1)要求的面积,关键是求出两直角边长,因此我们要把这两直角边与正方形的边长联系起来,由已知,,从而直的三边长之和为正方形的边长4,所以的边长可以用表示,也就求出了它的面积;(2)由(1),要求这个式子的最大值,我们要用换元法变形,这里我们设,则,于是就变为的代数函数,不能忘记的是的范围是,时取最大值.
试题解析:(1)设为,∴,
, 3分
,, 7分
(2)令, 9分
只需考虑取到最大值的情况,即为, 11分
当, 即时, 达到最大 13分
此时八角形所覆盖面积的最大值为 . 14分
考点:(1)方程与三角形面积;(2)换元法与三角函数的最大值.
科目:高中数学 来源: 题型:解答题
在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.
(1)若OM=,求PM的长;
(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在△ABC中,角A,B,C所对的边分别是a,b,c,设平面向量e1=,e2=,且e1⊥e2.
(1)求cos 2A的值;
(2)若a=2,求△ABC的周长L的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
辽宁广播电视塔位于沈阳市沈河区青年公园西侧,蜿蜒的南运河带状公园内,占地8000平方米.全塔分为塔座、塔身、塔楼和桅杆四部分. 某数学活动小组在青年公园的A处测得塔顶B处的仰角为45°,在地面上,沿着A点与塔底中心C处连成的直线行走129米后到达D处(假设可以到达),此时测得塔顶B处的仰角为60°.
(1)请你根据题意,画出一个ABCD四点间的简单关系图形;
(2)根据测量结果,计算辽宁广播电视塔的高度(精确到1米).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com