精英家教网 > 高中数学 > 题目详情

【题目】若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+2在(0,+∞)上存在最大值5,则f(x)在(﹣∞,0)上存在(  )
A.最小值﹣5
B.最大值﹣5
C.最小值﹣1
D.最大值﹣3

【答案】C
【解析】解:根据题意,f(x)=aφ(x)+bg(x)+2在(0,+∞)上存在最大值5,
即当x>0时,有aφ(x)+bg(x)+2≤5,即aφ(x)+bg(x)≤3,
又由φ(x),g(x)都是奇函数,则aφ(x)+bg(x)也为奇函数,
故当x<0时,aφ(x)+bg(x)=﹣[aφ(﹣x)+bg(﹣x)]≥﹣3,
则当x<0时,f(x)=aφ(x)+bg(x)+2≥﹣3+2=﹣1,
即f(x)在(﹣∞,0)上存在最小值﹣1,
故选C.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2 , 若对任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2 , 当x=1时,有极大值3,则a+b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),且f(﹣1)=2,则f(2017)的值是(
A.2
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f(4)=4,则f(2012)=(
A.0
B.﹣4
C.﹣8
D.﹣16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x﹣3|(a∈R).
(Ⅰ)当a=1时,求不等式f(x)≥x+8的解集;
(Ⅱ)若函数f(x)的最小值为5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表是一个2×2列联表:则表中a,b的值分别为(

y1

y2

合计

x1

a

21

73

x2

22

25

47

合计

b

46

120


A.94,72
B.52,50
C.52,74
D.74,52

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M满足{1,2,3}M{1,2,3,4,5},则集合M的个数为(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步练习册答案