精英家教网 > 高中数学 > 题目详情

如图,已知ABCD是矩形,M、N分别是PC、PD上的点,MN⊥PC,且PA⊥平面ABCD,AN⊥PD,求证:AM⊥PC.

证明:∵ABCD是矩形,
∴CD⊥AD,
∵PA⊥平面ABCD,
∴PA⊥CD,
∵PA∩AD=A,
∴CD⊥平面PAD,
∵AN?平面PAD,
∴CD⊥AN,
∵AN⊥PD于点N,CD∩PD=D,
∴AN⊥平面PCD,
∴AN⊥PC,
又MN⊥PC交PC于M,
∴PC⊥平面AMN,
∴AM⊥PC.
分析:利用线面垂直的判定定理证出CD⊥平面PAD,利用线面垂直的性质得到CD⊥AN,再利用线面垂直的判定定理证出
AN⊥平面PCD,利用线面垂直的性质得到AM⊥PC.
点评:本题考查线面垂直的判定定理和线面垂直的性质定理,证明线线垂直常利用证明线面垂直,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知ABCD是边长为a的正方形,E,F分别是AB,AD的中点,CG⊥面ABCD,CG=a.
(1)求证:BD∥EFG;
(2)求点B到面GEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是底角为30°的等腰梯形,AD=2
3
,BC=4
3
,取两腰中点M、N分别交对角线BD、AC于G、H,则
AG
AC
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是边长为1的正方形,AF⊥平面ABCD,CE∥AF,CE=λAF(λ>1).
(Ⅰ)证明:BD⊥EF;
(Ⅱ)若AF=1,且直线BE与平面ACE所成角的正弦值为
3
2
10
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是矩形,PD⊥平面ABCD,PB=2,PB与平面ABCD所成的角为30°,PB与平面PCD所成的角为45°,求:
(1)PB与CD所成角的大小;
(2)二面角C-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求证:平面AEC⊥平面AFC;
(Ⅱ)求直线EC与平面BCF所成的角;
(Ⅲ)问在EF上是否存在一点M,使三棱锥M-ACF是正三棱锥?若存在,试确定M点的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案