【题目】为了解某初中学校学生睡眠状况,在该校全体学生中随机抽取了容量为120的样本,统计睡眠时间(单位:).经统计,时间均在区间内,将其按,,,,,分成6组,制成如图所示的频率分布直方图:
(1)世界卫生组织表明,该年龄段的学生睡眠时间服从正态分布,其标准为:该年龄段的学生睡眠时间的平均值,方差.根据原则,用样本估计总体,判断该初中学校学生睡眠时间在区间上是否达标?
(参考公式:,,)
(2)若规定睡眠时间不低于为优质睡眠.已知所抽取的这120名学生中,男、女睡眠质量人数如下列联表所示:
优质睡眠 | 非优质睡眠 | 合计 | |
男 | 60 | ||
女 | 19 | ||
合计 |
将列联表数据补充完整,并判断是否有的把握认为优质睡眠与性别有关系,并说明理由;
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
【答案】(1)该校学生睡眠时间在区间上不达标;(2)列联表见解析,有的把握认为优质睡眠与性别有关系;理由见解析
【解析】
(1)根据频率分布直方图求出,求出.根据频率分布直方图求出学生睡眠时间在区间上的概率,与比较大小,即得答案;
(2)求出样本中优质睡眠学生的人数,补全列联表,计算,根据临界值表可得结论.
(1)根据直方图数据,有,
解得.
由平均值,样本方差,得,,
则即求样本数据中区间内的概率值,
则,
该校学生睡眠时间在区间上不达标.
(2)根据直方图可知,样本中优质睡眠学生有,列联表如下:
优质睡眠 | 非优质睡眠 | 合计 | |
男 | 11 | 60 | 71 |
女 | 19 | 30 | 49 |
合计 | 30 | 90 | 120 |
可得,
所以,有的把握认为优质睡眠与性别有关系.
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,以原点为圆心,短半轴长为半径的圆恰好经过椭圆的两焦点,且该圆截直线所得的弦长为.
(1)求椭圆的标准方程;
(2)过定点的直线交椭圆于两点、,椭圆上的点满足,试求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,求;
(3)设,问:是否存在非零整数,使数列为递增数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数).
(1)求曲线的参数方程与直线的普通方程;
(2)设点过为曲线上的动点,点和点为直线上的点,且满足为等边三角形,求边长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点的曲线的方程为.
(Ⅰ)求曲线的标准方程:
(Ⅱ)已知点,为直线上任意一点,过作的垂线交曲线于点,.
(ⅰ)证明:平分线段(其中为坐标原点);
(ⅱ)求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),其坐标满足条件:|x1x2+y1y2|的最大值为0,则称f(x)为“柯西函数”,则下列函数:
①f(x)=x(x>0);
②f(x)=lnx(0<x<3);
③f(x)=cosx;
④f(x)=x2﹣1.
其中为“柯西函数”的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)x2+ax+lnx(a∈R)
(1)讨论函数f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2且|x1﹣x2|,求|f(x1)﹣f(x2)|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从2011年到2018年参加“北约”“华约”考试而获得加分的学生(每位学生只能参加“北约”“华约”中的一种考试)人数可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推)
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人数 | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)求这八年来,该校参加“北约”“华约”考试而获得加分的学生人数的中位数和方差;
(2)根据最近五年的数据,利用最小二乘法求出与之间的线性回归方程,并依此预测该校2019年参加“北约”“华约”考试而获得加分的学生人数.(结果要求四舍五入至个位)
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某流行病爆发期间,某市卫生防疫部门给出的治疗方案中推荐了三种治疗药物,,(,,的使用是互斥且完备的),并且感染患者按规定都得到了药物治疗.患者在关于这三种药物的有关参数及市场调查数据如下表所示:(表中的数据都以一个疗程计)
药物 | |||
单价(单位:元) | 600 | 1000 | 800 |
治愈率 | |||
市场使用量(单位:人) | 305 | 122 | 183 |
(Ⅰ)从感染患者中任取一人,试求其一个疗程被治愈的概率大约是多少?
(Ⅱ)试估算每名感染患者在一个疗程的药物治疗费用平均是多少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com