精英家教网 > 高中数学 > 题目详情
设定义域为R的函数f(x)满足下列条件:①对任意x∈R,f(x)+f(-x)=0;②对任意x∈[-1,1],都有
f(x1)-f(x2)  
x1-x2
>0
,且f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,t的取值范围是(  )
分析:由①②和奇函数的定义、增函数的定义,判断出是奇函数、增函数,再求出f(x)在[-1,1]上的最大值,将恒成立转化为:t2-2at≥0对所有的a∈[-1,1]都成立,设g(a)=t2-2at,由一次函数的性质列出不等式求解.
解答:解:由f(x)+f(-x)=0得,f(x)=-f(-x),
则定义域为R的函数f(x)是奇函数,
∵对任意x∈[-1,1],都有
f(x1)-f(x2)  
x1-x2
>0

∴f(x)在[-1,1]上是增函数,
则f(x)在[-1,1]上的最大值是f(1)=-f(-1)=1,
∵f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,
∴t2-2at≥0对所有的a∈[-1,1]都成立,
设g(a)=t2-2at,a∈[-1,1],
g(1)≥0
g(-1)≥0
,∴
t2-2t≥0
t2+2t≥0
,解得t≤-2或t=0或t≥2,
故选D.
点评:本题考查了函数的奇偶性和单调性的综合应用,以及构造函数法解决恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有5个不同的实数解,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
-2x+a2x+1+b
(a,b为实数)若f(x)是奇函数.
(1)求a与b的值;
(2)判断函数f(x)的单调性,并证明;
(3)证明对任何实数x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
|lg|x-1||,x≠1
0,          x=1
,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若关于x的方程f2(x)+bf(x)+c=0有三个不同的实数解x1、x2、x3,则x12+x22|x32等于(  )

查看答案和解析>>

同步练习册答案