精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.

(1)求证:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.
(1)只需证VD∥EO;(2)

试题分析:(1)由正视图可得:平面VAB⊥平面ABCD,连接BD交AC于O 点,连EO,由已知可得BO=OD,
VE=EB
∴ VD∥EO  
又VD平面EAC,EO平面EAC
∴ VD∥平面EAC  
(2)设AB的中点为P,则由题意可知VP⊥平面ABCD,
建立如图所示坐标系

=(x,y,z)是平面VBD法向量,
=(-2,2,0)    



 
∴二面角A—VB—D的余弦值
点评:综合法求二面角,往往需要作出平面角,这是几何中一大难点,而用向量法求解二面角无需作出二面角的平面角,只需求出平面的法向量,经过简单运算即可,从而体现了空间向量的巨大作用.二面角的向量求法: ①若AB、CD分别是二面的两个半平面内与棱垂直的异面直线,则二面角的大小就是向量的夹角; ②设分别是二面角的两个面α,β的法向量,则向量的夹角(或其补角)的大小就是二面角的平面角的大小。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)已知:正方体中,棱长分别为的中点,的中点,

(1)求证://平面
(2)求:到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab表示两条不同直线,α、β表示两个不同平面,则下列命题正确的是(    
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在□ABCD中,∠DAB=60°,AB=2,AD="4." 将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

(1)求证:AB⊥DE;
(2)求三棱锥E—ABD的侧面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

夹在的二面角内的一个球与二面角的两个面的切点到棱的距离都是6,则这个球的半径为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A-BCD是各条棱长都相等的三棱锥.,那么AB和CD所成的角等于_______。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD—A1B1C1D1中,E、F分别是AB、B1C的中点,则EF与平面ABCD所成的角的正切值为(  )

A. 2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是(     )
A.垂直于同一个平面的两条直线互相平行
B.垂直于同一条直线的两个平面互相平行
C.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面
D.若平面,且,过内任意一点作直线,则

查看答案和解析>>

同步练习册答案