精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=|x2-2x-3|.
(1)求函数f(x)的零点
(2)在给出的平面直角坐标系中直接画出函数f(x)的图象,并写出单调区间.

分析 (1)f(x)=|x2-2x-3|=0,可得函数f(x)的零点;
(2)去掉绝对值,原函数变成:f(x)=|x2-2x-3|=$\left\{\begin{array}{l}{-{x}^{2}+2x+3=-(x-1)^{2}+4,-1≤x≤3}\\{{x}^{2}-2x-3=(x-1)^{2}-4,x<-1或x>3}\end{array}\right.$,画出每段上的二次函数图象,根据图象即可写出单调区间.

解答 解:(1)f(x)=|x2-2x-3|=0,∴x=-1或3.
(2)f(x)=|x2-2x-3|=$\left\{\begin{array}{l}{-{x}^{2}+2x+3=-(x-1)^{2}+4,-1≤x≤3}\\{{x}^{2}-2x-3=(x-1)^{2}-4,x<-1或x>3}\end{array}\right.$.
∴图象为:
通过图象可以看出单调增区间为:[-1,1],(3,+∞);单调减区间为:(-∞,-1),(1,3].

点评 本题主要考查含绝对值函数图象的画法及通过图形求单调区间的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2-2x+3,x∈R},则A∩B={y|-4≤y≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某电子广告牌连续播出四个广告,假设每个广告所需的时间互相独立,且都是整数分钟,经统计,以往播出100次所需的时间(t)的情况如下:
类别1号广告2号广告3号广告4号广告
广告次数20304010
时间t(分钟/人)2346
每次随机播出,若将频率视为概率.
(Ⅰ)求恰好在开播第6分钟后开始播出第3号广告的概率;
(Ⅱ)求第4分钟末完整播出广告1次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四边形ABCD中,AD∥BC,BC=CD,∠ADC=90°,BC=DC=2AD,E为四边形ABCD内一点,F为四边形ABCD外一点,且∠BEC=∠DFC=90°,BE∥CF交CD的中点于N.
(1)已知EC=1,求线段DF的长;
(2)连接BF交EC于G,求证:∠A+$\frac{1}{3}$∠ABF=135°.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:选择题

两数之间插入5个数,使他们与组成等差数列,则该数列的公差为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P(x0,y0)在直线l:f(x,y)=0外,则l1:f(x,y)+f(x0,y0)=0与l2:f(-y,x)+f(x0,y0)=0的位置关系是(  )
A.平行B.垂直C.平行或重合D.相交且不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范围是a≤-3.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:选择题

等比数列的第四项等于( )

A.-24 B.0 C.12 D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a2=1,前n项和为Sn,且2Sn=n(an-a1).
(1)求a1
(2)求证:数列{an}为等差数列,并求其通项公式;
(3)若bn=$\frac{{a}_{n+3}}{{a}_{n+1}{a}_{n+2}{2}^{{a}_{n+1}}}$,且b1+b2+…+bn-1≤1-(k+1)bn对一切正整数n恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案