【题目】奇函数f(x)定义域为(﹣π,0)∪(0,π),其导函数是f′(x).当0<x<π时,有f′(x)sinx﹣f(x)cosx<0,则关于x的不等式f(x)< f( )sinx的解集为( )
A.( ,π)
B.(﹣π,﹣ )∪( ,π)
C.(﹣ ,0)∪(0, )
D.(﹣ ,0)∪( ,π)
【答案】D
【解析】解:设g(x)= ,
∴g′(x)= ,
∵f(x)是定义在(﹣π,0)∪(0,π)上的奇函数,
故g(﹣x)= = =g(x)
∴g(x)是定义在(﹣π,0)∪(0,π)上的偶函数.
∵当0<x<π时,f′(x)sinx﹣f(x)cosx<0
∴g'(x)<0,
∴g(x)在(0,π)上单调递减,
∴g(x)在(﹣π,0)上单调递增.
∵f( )=0,
∴g( )= =0,
∵f(x)< f( )sinx,即g( )>g(x);
①当sinx>0时,即x∈(0,π),所以x∈( ,π);
②当sinx<0时,即x∈(﹣π,0)时,g( )=g(﹣ )<g(x);
所以x∈(﹣ ,0);
即不等式f(x)< f( )sinx的解集为解集为(﹣ ,0)∪( ,π),
故选:D
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占 ,统计成绩后,得到如下的2×2列联表:
分数大于等于120分 | 分数不足120分 | 合 计 | |
周做题时间不少于15小时 | 4 | 19 | |
周做题时间不足15小时 | |||
合 计 | 45 |
(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)(i) 按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
(ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )
A.8日
B.9日
C.12日
D.16日
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=lnx﹣ax2+(2﹣a)x,a∈R.
(1)求g(x)的单调区间;
(2)若函数f(x)=g(x)+(a+1)x2﹣2x,x1 , x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′( )<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cos ﹣1), =( sin ,cos2 ),函数f(x)= +1.
(1)若x∈[ ,π],求f(x)的最小值及对应的x的值;
(2)若x∈[0, ],f(x)= ,求sinx的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x0∈R使得关于x的不等式|x﹣1|﹣|x﹣2|≥t成立.
(1)求满足条件的实数t集合T;
(2)若m>1,n>1,且对于t∈T,不等式log3mlog3n≥t恒成立,试求m+n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项a1 , a2 , …,an(n∈N*)组成集合An={a1 , a2 , …,an},从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),例如:对于数列{2n﹣1},当n=1时,A1={1},T1=1;n=2时,A2={1,3},T1=1+3,T2=13;
(1)若集合An={1,3,5,…,2n﹣1},求当n=3时,T1 , T2 , T3的值;
(2)若集合An={1,3,7,…,2n﹣1},证明:n=k时集合Ak的Tm与n=k+1时集合Ak+1的Tm(为了以示区别,用Tm′表示)有关系式Tm′=(2k+1﹣1)Tm﹣1+Tm , 其中m,k∈N*,2≤m≤k;
(3)对于(2)中集合An . 定义Sn=T1+T2+…+Tn , 求Sn(用n表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com