精英家教网 > 高中数学 > 题目详情

给定数列.对,该数列前项的最大值记为,后的最小值记为,.
(1)设数列为3,4,7,1,写出,,的值;
(2)设()是公比大于1的等比数列,且.证明:,,…,是等比数列.

(1);(2),即证明是等比数列.

解析试题分析:解题思路:(1)利用所给定义,依次求即可(2)设法证明即可.规律总结:凡是新定义性题目,要阅读定义中的信息,与已学知识点相结合,使之转化为学过的知识是解决本类题目的关键.
试题解析:(1).
(2)因为,公比,所以是递增数列.
因此,对,,
于是对,.
因此(),即,,,是等比数列.
考点:1.新定义性题目;2.等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

等比数列中,已知,且为递增数列,
________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn; (2)求数列{an·bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项
(1)求证:数列为等比数列;
(2)若,求最大的正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an }的前n项和为Sn,满足an ¹ 0,
(1)求证:
(2)设,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,a1=2.当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求证:{Sn+1}是等比数列;
(2)求数列{nan}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且满足
(1)求数列的通项公式;
(2)求证: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3
(Ⅱ)求证:对k≥3有0≤ak

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.
(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)
(2)证明:函数是等比源函数;
(3)判断函数是否为等比源函数,并证明你的结论.

查看答案和解析>>

同步练习册答案