【题目】某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.
甲产品所需工时 | 乙产品所需工时 | |
A设备 | 2 | 3 |
B设备 | 4 | 1 |
若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为( )
A.40万元
B.45万元
C.50万元
D.55万元
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.
(Ⅰ)求证:CE∥平面PAD;
(Ⅱ)求PD与平面PCE所成角的正弦值;
(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求 的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是等差数列,数列{bn}是等比数列,Sn是数列{an}的前n项和,a1=b1=1,S2=.
(1)若b2是a1,a3的等差中项,求数列{an}与{bn}的通项公式;
(2)若an∈N+,数列{}是公比为9的等比数列,求证:+++…+<.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的单调区间;
(2)若n=k=1,且当x≥0时,f(x)≥1总成立,求实数m的取值范围;
(3)若m>0,n=0,k=1,若f(x)存在两个极值点x1、x2 , 求证: <f(x1)+f(x2)< .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣ )﹣cos(A+ )= .
(1)求角A的大小;
(2)若a= ,sin2B+cos2C=1,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)y1y2=-p2,;(2)为定值;
(3)以AB为直径的圆与抛物线的准线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,已知∠A= ,∠B= ,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED= ,EC= .
(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com