精英家教网 > 高中数学 > 题目详情
2
-1)-1
考点:根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:利用分母有理化即可得出.
解答: 解:原式=
1
2
-1
=
2
+1
(
2
-1)(
2
+1)
=
2
+1.
点评:本题考查了有理化因式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z1=5+13i,z2=7+28i,其中i是虚数单位,则复数(z1-z2)i的实部为  (
A、-20B、15C、30D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x,y)与两个定点M1,M2距离的比是一个正数m,求点M的轨迹方程,并说明轨迹是什么图形(考虑m=1和m≠1两种情形).

查看答案和解析>>

科目:高中数学 来源: 题型:

设A为非空实数集,若?x,y∈A,都有x+y,x-y,xy∈A,则称A为封闭集.
①集合A={-2,-1,0,1,2}为封闭集;
②集合A={n|n=2k,k∈Z}为封闭集;
③若集合A1,A2为封闭集,则A1∪A2为封闭集;
④若A为封闭集,则一定有0∈A.
其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}的前n项和为Sn,a5=32,a3、a4的等差中项为3a2
(1)求an的通项公式;
(2)设bn=
n
a2n-1
,求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=a2x-2ax-1(a>0,a≠1)在区间[-1,1]上最大值是14,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

O(0,0,0)、A(
3
,0,0)、B(0,1,0)、C(-
3
,0,0)、F(0,0,
3
)   向量
CF
=
 
CB
=
 
、∠BFC=
 
,∠AFC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an-2an-1-2n-1=0(n∈N*),求证:数列{
an
2n
}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场对顾客实行购物优惠活动,规定一次购物总额:(1)如果不超过500元,那么不予优惠;(2)如果超过500元但不超过1000元,那么按标价给予8折优惠;(3)如果超过1000元,那么其中1000元给予8折优惠,超过1000元部分按5折优惠.设一次购物总额为x元,优惠后实际付款额为y元.
(1)试写出用x(元)表示y(元)的函数关系式;
(2)某顾客实际付款1600元,在这次优惠活动中他实际付款比购物总额少支出多少元?

查看答案和解析>>

同步练习册答案