精英家教网 > 高中数学 > 题目详情
已知抛物线的焦点F在x轴上,直线l过点F且垂直于x轴,l与抛物线交于A、B两点,O为坐标原点,若△OAB的面积等于4,求此抛物线的标准方程.
分析:设抛物线方程为y2=2px(p≠0),依题意,可求得AB=2|p|,利用△OAB的面积等于4,即可求得p,从而可得此抛物线的标准方程.
解答:解:由题意,设抛物线方程为y2=2px(p≠0),
焦点F(
p
2
,0
),直线l:x=
p
2

∴A、B两点坐标为(
p
2
,p
),(
p
2
,-p
),
∴AB=2|p|.
∵△OAB的面积为4,
1
2
•|
p
2
|•2|p|=4,
∴p=±2
2

∴抛物线的标准方程为y2=±4
2
x.
点评:本题考查抛物线的简单性质,考查方程思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线的焦点F在y轴上,抛物线上一点A(a,4)到准线的距离是5,过点F的直线与抛物线交于M,N两点,过M,N两点分别作抛物线的切线,这两条切线的交点为T.
(I)求抛物线的标准方程;
(II)求
FT
MN
的值;
(III)求证:|
FT
|是|
MF
|和|
NF
|
的等比中项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点F在y轴上,抛物线上一点A(a,4)到准线的距离是5,过点F的直线与抛物线交于M,N两点,过M,N两点分别作抛物线的切线,这两条切线的交点为T.
(I)求抛物线的标准方程;
(II)求数学公式的值;
(III)求证:数学公式的等比中项.

查看答案和解析>>

科目:高中数学 来源:东城区二模 题型:解答题

已知抛物线的焦点F在y轴上,抛物线上一点A(a,4)到准线的距离是5,过点F的直线与抛物线交于M,N两点,过M,N两点分别作抛物线的切线,这两条切线的交点为T.
(I)求抛物线的标准方程;
(II)求
FT
MN
的值;
(III)求证:|
FT
|是|
MF
|和|
NF
|
的等比中项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点F在x轴上,直线l过点F且垂直于x轴,l与抛物线交于A、B两点,O为坐标原点,若△OAB的面积等于4,求此抛物线的标准方程.

查看答案和解析>>

同步练习册答案