【题目】在三棱锥DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E为AC的中点.
(I)证明:ADBC;
(II)求直线 DE 与平面ABD所成的角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,在中国象棋规则下,点A处的“兵”可通过某条路径到达点B(兵在过河前每步只能走到其前方相邻的交叉点处,过河之后每步则可走到前方、左方、右方相邻的交叉点处,但不能后退,“河”是指图棋盘中第5、6条横线之间的部分).在兵的行进过程中,若棋盘的每个交叉点均不被兵重复走到,则称此路径为“无重复路径”.那么,不同的无重复路径的条数为__________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,E,F分别为AC,BC的中点.
(1)求证:EF∥平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的左焦点为,点A的坐标为(0,1),点P为双曲线右支上的动点,且△APF1周长的最小值为6,则双曲线的离心率为( )
A.B.C.2D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数.
(1)若函数在区间上存在零点,求实数p的取值范围;
(2)问是否存在常数,使得当时,的值域为区间D,且D的长度为.
(注:区间 的长度为).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是椭圆上任一点,点到直线:的距离为,到点的距离为,且,若直线与椭圆交于不同两点、(、都在轴上方),且.
(1)求椭圆的标准方程;
(2)当为椭圆与轴正半轴的交点时,求直线的方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出定点的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com