精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=x2+bx+4满足f(1+x)=f(1-x),且函数y=f(3x)-m在x∈[-1,2]上有零点,则实数m的取值范围为[$\frac{31}{9}$,11].

分析 先求出函数f(x)的表达式,结合函数的零点定理判断即可.

解答 解:∵函数f(x)=x2+bx+4满足f(1+x)=f(1-x),
∴-$\frac{b}{2}$=1,解得b=-2,
∴f(x)=x2-2x+4.
若函数y=f(3x)-m在x∈[-1,2]上有零点,
即[f(3-1)-m][f(32)-m]≤0,
解得:$\frac{31}{9}$≤m≤11,
故答案为:[$\frac{31}{9}$,67].

点评 本题考查了二次函数的性质,考查函数的零点的判定定理,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合M={1,2,3},N={2,3},则(  )
A.M=NB.M∩N=∅C.M⊆ND.N?M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x-2x-b(b为常数),则f(-1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F是A1C1、BC的中点.证明:
(1)C1F∥面ABE;
(2)证明:平面AEB⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC中,内角A,B,C的对边分别为a,b,c,若sin2A,sin2B,sin2C成等差数列.
(1)求tanA+3tanC的最小值;
(2)在(1)中取最小值的条件下,若$c=2\sqrt{10}$,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t无关,统计得到P(n)=$\left\{\begin{array}{l}{(\frac{1}{2})^{n}•P(0)(1≤n≤5)}\\{0,(n≥6)}\end{array}\right.$,那么在某一时刻这个公用电话亭里一个人也没有的概率P(0)的值是(  )
A.0B.1C.$\frac{32}{63}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O(0,0,0),A(-2,2,-2),B(1,4,-6),C(x,-8,8),若OC⊥AB,则x=16;若O、A、B、C四点共面,则x=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a=log23,则2a+2-a=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)的导数为题f′(x)若函数在区间f(x)在区间(a,b)内无极值点,则f'(x)在区间(a,b)内无零点.命题P的逆命题,否命题,逆否命题中,正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案