精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinxcosx+cos2x+a
(a为常数).
(Ⅰ)求函数f(x)的最小正周期,并指出其单调减区间;
(Ⅱ)若函数f(x)在[0,
π
2
]上恰有两个x的值满足f(x)=2,试求实数a的取值范围.
分析:(Ⅰ)通过二倍角公式以及两角和的正弦函数,化简函数为一个角的一个三角函数的形式,然后求出函数f(x)的最小正周期,通过正弦函数的单调减区间求出函数的单调减区间;
(Ⅱ)通过函数f(x)在[0,
π
2
]上恰有两个x的值满足f(x)=2,通过换元法,利用
g(
π
6
)≤2
g(
π
2
)>2
,试求实数a的取值范围.
解答:(本小题满分15分)
解:(Ⅰ)∵f(x)=
3
2
sin2x+
1+cos2x
2
+a
=sin(2x+
π
6
)+
1
2
+a

∴最小正周期T=
2

单调递减区间为[kπ+
π
6
,kπ+
3
]
(k∈Z).
(Ⅱ)令u=2x+
π
6
,则g(u)=sinu+
1
2
+a
u∈[
π
6
6
]

要使g(u)在[
π
6
6
]
上恰有两个x的值满足g(u)=2,
g(
π
6
)≤2
g(
π
2
)>2
,解得 
1
2
<a≤1
点评:本题考查三角函数的化简求值,二倍角公式与两角和的正弦函数的应用,函数的基本性质,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案