精英家教网 > 高中数学 > 题目详情

【题目】有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定:大桥上的车距d(m)与车速v(km/h)和车身长l(m)的关系满足:d=kv2l+ l(k为正的常数),假定大桥上的车的车身长都为4m,当车速为60km/h时,车距为2.66个车身长.
(1)写出车距d关于车速v的函数关系式;
(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?

【答案】
(1)解:因为当v=60时,d=2.66l,所以

∴d=0.0024v2+2


(2)解:设每小时通过的车辆为Q,每小时内通过汽车的数量为Q最大,只须 最小,

即Q=

当且仅当 ,即v=50时,Q取最大值

答:当v=50(km/h)时,大桥每小时通过的车辆最多


【解析】(1)根据当车速为60(km/h)时,车距为2.66个车身长,建立等式关系,求出k的值,即可求出车距d关于车速v的函数关系式;(2)设每小时通过的车辆为Q,每小时内通过汽车的数量为Q最大,只须 最小,将d代入,然后利用基本不等式求出最值,即可求出所求.
【考点精析】解答此题的关键在于理解基本不等式的相关知识,掌握基本不等式:,(当且仅当时取到等号);变形公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=f(x)﹣a
(1)当a=2时,求函数g(x)的零点;
(2)若函数g(x)有四个零点,求a的取值范围;
(3)在(2)的条件下,记g(x)得四个零点分别为x1 , x2 , x3 , x4 , 求x1+x2+x3+x4的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8. (Ⅰ)若a=2,b= ,求cosC的值;
(Ⅱ)若sinAcos2 +sinBcos2 =2sinC,且△ABC的面积S= sinC,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有质地、大小完全相同的5个小球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏.甲先摸出一个球.记下编号,放回后再摸出一个球,记下编号,如果两个编号之和为偶数.则算甲赢,否则算乙赢.
(1)求甲赢且编号之和为6的事件发生的概率:
(2)试问:这种游戏规则公平吗.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数

(1)若处取得极小值为,求的值;

(2)对于任意给定的正实数,证明:存在实数,当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为( )
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据题意解答
(1)利用“五点法”画出函数 在长度为一个周期的闭区间的简图.

(2)并说明该函数图像可由y=sinx(x∈R)的图像经过怎样平移和伸缩变换得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:

(1)试估算该校高三年级学生获得成绩为的人数;

(2)若等级分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?

(3)为了解心理健康状态稳定学生的特点,现从两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为级的个数的分布列与数学期望.

查看答案和解析>>

同步练习册答案