精英家教网 > 高中数学 > 题目详情
抛物线x2=4y的准线l与y轴交于点P,若l绕点P以每秒
π
12
弧度的角速度按逆时针方向旋转t1秒后,恰好与抛物线第一次相交于一点,再旋转t2秒后,恰好与抛物线第二次相相交于一点,则t2的值为(  )
A、6B、4C、3D、2
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线的方程,找出p的值,进而得到其准线方程和P的坐标,根据直线l过P点,设出直线l的斜率为k时与抛物线相切,表示出此时直线l的方程,与抛物线联立,消去y得到关于x的一元二次方程,令根的判别式等于0列出关于k的方程,求出方程的解即可得到k的值,从而确定出直线l的倾斜角,用求出的倾斜角除以角速度即可求出此时所用的时间t1=3.同理,旋转t2秒后,恰好与抛物线第二次相相交于一点,则t2=3.
解答: 解:根据抛物线的方程x2=4y,得到p=1,
所以此抛物线的准线方程为y=-1,P坐标为(0,-1),
令恒过P点的直线y=kx-1与抛物线相切,
联立直线与抛物线,消去y得:x2-4kx+4=0,得到△=k2-1=0,即k2=1,
解得:k=1或k=-1,
由直线l绕点P逆时针旋转,k=-1不合题意,舍去,
则k=1,此时直线的倾斜角为
π
4
又P的角速度为每秒
π
12
弧度,
所以直线l恰与抛物线第一次相切,则t1=3.
同理,旋转t2秒后,恰好与抛物线第二次相相交于一点,则t2=3,
故选C.
点评:本题以抛物线为载体,考查抛物线的简单性质,直线与曲线相切位置关系的应用,解题的一般式步骤是;设出直线的方程,联立直线与曲线方程,整理可得一元二次方程,方程判别式等于0,求解参数的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,使得对任意x∈R,有f(x+T)=Tf(x)成立.
(1)函数f(x)=x是否属于M?说明理由.
(2)证明函数f(x)=sinπx∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1),B(-2,3)C(-1,2),D(1,5),则向量
AC
BD
方向上的投影为(  )
A、
2
13
13
B、-
2
13
13
C、
13
13
D、-
13
13

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x(x-1)(x-2)…(x-2015),则f′(2015)=(  )
A、-2013!
B、-2015!
C、2013!
D、2015!

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,求证sin2A+sin2B+sin2C≤
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z1,z2满足
3
z1-1+(z1-z2)i=0且|z1-
3
+i|=1.求z2对应点轨迹及|z1-z2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数fn(x)=xn,n∈N*
(1)记函数F(x)=bf1(x)-lnf3(x),x∈(0,e],若F(x)的最小值为6,求实数b的值;
(2)对于(1)中的b,设函数g(x)=(
b
3
x,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若g'(x0)=
y2-y1
x2-x1
,试证明x0<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),C(0,a)(a∈R且a≠0),且动点D满足DA=
3
DB.
(1)求过A,B,C三点的⊙Q的方程;
(2)当△DAB面积取到最大值
3
时,
①若此时动点D又在⊙Q内(包含边界),求实数a的取值范围;
②设点G为△DAB的重心,过G作直线分别交边AB,AD于点M,N,求四边形MNDB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α-β)=-
4
5
,cos(α+β)=
4
5
,α-β在第三象限,α+β在第四象限,求cos2α,cos2β.

查看答案和解析>>

同步练习册答案