精英家教网 > 高中数学 > 题目详情

已知椭圆过点,且离心率

(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

(Ⅰ)椭圆方程为
(Ⅱ)

解析试题分析:(Ⅰ)设出椭圆的方程,结合离心率公式和点的坐标得到a,b的关系式,进而求解得到方程。
(Ⅱ)联立直线与椭圆的方程,结合韦达定理表示出根与系数的关系,结合斜率狗狗是得到m,k的表达式,进而结合判别式得到范围。
解:(Ⅰ)离心率,即(1);
又椭圆过点,则,(1)式代入上式,解得
椭圆方程为。-------4分
(Ⅱ)设,弦MN的中点A
得:,------------6分
直线与椭圆交于不同的两点,
,即……(1)--------8分
由韦达定理得:
,-------------10分
直线AG的斜率为:
由直线AG和直线MN垂直可得:,即,----12分
代入(1)式,可得,即,则---14分
考点:本题主要考查了直线与椭圆的位置关系的运用。
点评:解决该试题的关键是能够利用椭圆的几何性质准确表述出a,b,c的关系式及而求解得到椭圆方程,同时联立方程组,结合韦达定理是我们解析几何的常用的解题方法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆上的任意一点到它的两个焦点的距离之和为,且其焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(12分)经过点作直线交双曲线两点,且 为 中点.
(1)求直线的方程 ;(2)求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的焦点F1(-,0)和F2,0),长轴长6。
(1)求椭圆C的标准方程。
(2)设直线交椭圆C于A、B两点,求线段AB的中点坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,已知椭圆(a>b>0)的离心率,过点 和的直线与原点的距离为

(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于两   点.问:是否存在的值,
使以为直径的圆过点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
设直线与抛物线交于不同两点A、B,F为抛物线的焦点。
(1)求的重心G的轨迹方程;
(2)如果的外接圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)(文科)已知曲线的离心率,直线两点,原点的距离是.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点作直线交双曲线于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点
(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;
(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;
(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(1)中的点)的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:











 
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案