精英家教网 > 高中数学 > 题目详情
20.若$\overrightarrow{e_1},\overrightarrow{e_2}$是两个单位向量,且$\overrightarrow{e_1}•\overrightarrow{e_2}$=$\frac{1}{2}$,若$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,则向量$\overrightarrow a•\overrightarrow b$=-$\frac{7}{2}$.

分析 运用向量数量积的性质:向量的平方即为模的平方,计算即可得到所求值.

解答 解:若$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,
则$\overrightarrow a•\overrightarrow b$=(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)•(-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)
=-6$\overrightarrow{{e}_{1}}$2+2$\overrightarrow{{e}_{2}}$2+$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$
=-6+2+$\frac{1}{2}$=-$\frac{7}{2}$,
故答案为:-$\frac{7}{2}$.

点评 本题考查向量数量积的坐标运算,考查向量的平方即为模的平方,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<a}\\{{2}^{x},x≥a}\end{array}\right.$,若存在实数b,使函数g(x)=f(x)-b有两个零点,则实数a的取值范围是(  )
A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在1L高产小麦种子中混入1粒带麦锈病的种子,从中随机取出20mL,则不含有麦锈病种子的概率为$\frac{49}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有下列说法其正确是(  )
A.0与{0}表示同一个集合
B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}
C.方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2}
D.集合{x|4<x<5}是有限集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=b•ax,(其中a,b为常数且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x)的解析式;
(2)求函数g(x)=$\frac{1}{3}$(f(x))2-f(x)+1,x∈[0,2]的值域;
(3)若不等式($\frac{1}{a}$)${\;}^{x}+(\frac{1}{b})^{x}+2m-3≥0$在x∈(-∞,1]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.把sin$\frac{π}{12}$,sin$\frac{5}{12}π$,cos$\frac{5}{7}π$,tan$\frac{5}{12}π$由小到大排列为$cos\frac{5π}{7}$<$sin\frac{π}{12}$<$sin\frac{5}{12}π$<$tan\frac{5}{12}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=mx2-x+lnx.
(1)当m=-1时,求f(x)的极大值;
(2)若在函数f(x)的定义域内存在区间D,使得该函数在区间D上为减函数,求实数m的取值范围;
(3)当$0<m≤\frac{1}{2}$时,若曲线C:y=f(x)在点x=1处的切线l与曲线C有且只有一个公共点,求m的值或取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当,x∈(0,2)时,f(x)=2x,则f(2015)的值为(  )
A.-2B.-1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1+2a2+…+nan=2-$\frac{n+2}{2^n}$
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2$\frac{1}{2a_n^2},且{c_n}=\frac{b_n}{a_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案