【题目】如图(1)是一个水平放置的正三棱柱, 是棱的中点,正三棱柱的主视图如图(2).
(1)图(1)中垂直于平面的平面有哪几个(直接写出符合要求的平面即可,不必说明或证明)
(2)求正三棱柱的体积;
(3)证明: 平面.
科目:高中数学 来源: 题型:
【题目】已知曲线 上有一点列过点在x轴上的射影是,且1+2+3+…+n=2n+1-n-2. (n∈N*)
(1)求数列{}的通项公式
(2)设四边形 的面积是,求
(3)在(2)条件下,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇
函数,且相邻两对称轴间的距离为.
(Ⅰ)当时,求的单调递减区间;
(Ⅱ)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),
得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学餐饮中心为了了解新生的饮食习惯,利用简单随机抽样的方法在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)根据(1)的结论,你能否提出更好的调查方法来了解该校大学新生的饮食习惯,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | |||
合计 |
(参考公式,其中.)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com