精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ,h(x)=2f(x)﹣ax﹣b.
(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)若f(x)为奇函数,且h(x)在[﹣1,1]有零点,求实数b的取值范围.

【答案】解:(Ⅰ)若f(x)为奇函数,则对于x∈R有f(﹣x)=﹣f(x)得 , 化为2x+1+a2x+1=﹣2x+1﹣a2x+1 , 所以a=﹣1
若f(x)为偶函数,则对于x∈R有f(﹣x)=f(x)得
化为2x+1+a2x+1=2x+1+a2x+1 , 所以a=1
综上知,当a=﹣1时,f(x)为奇函数;
当a=1时,f(x)为偶函数;
当a≠±1时,f(x)非奇非偶.
(Ⅱ) 由(Ⅰ)知若f(x)为奇函数,则a=﹣1.
此时 在[﹣1,1]有零点,
即有x∈[﹣1,1]满足方程
由于函数 在[﹣1,1]单调递增,
在x∈[﹣1,1]时其值域为
所以
即实数b的取值范围为
【解析】(Ⅰ)由已知中函数f(x)= ,根据f(x)为奇函数,则对于x∈R有f(﹣x)=﹣f(x),f(x)为偶函数,则对于x∈R有f(﹣x)=f(x),可得结论;(Ⅱ)若f(x)为奇函数,即a=﹣1,若h(x)在[﹣1,1]有零点,即有x∈[﹣1,1]满足方程 ,构造函数求出值域,可得答案.
【考点精析】根据题目的已知条件,利用函数的奇偶性的相关知识可以得到问题的答案,需要掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若异面直线a、b所成的角为60°,则过空间一点P且与a、b所成的角都为60°的直线有条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},对任意的k∈N* , 当n=3k时,an= ;当n≠3k时,an=n,那么该数列中的第10个2是该数列的第项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1+a5=17.
(1)若{an}还同时满足: ①{an}为等比数列;②a2a4=16;③对任意的正整数n,a2n<a2n+2 , 试求数列{an}的通项公式.
(2)若{an}为等差数列,且S8=56. ①求该等差数列的公差d;②设数列{bn}满足bn=3nan , 则当n为何值时,bn最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将正六边形ABCDEF中的一半图形ABCD绕AD翻折到AB1C1D,使得∠B1AF=60°.G是BF与AD的交点.
(Ⅰ)求证:平面ADEF⊥平面B1FG;
(Ⅱ)求直线AB1与平面ADEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I) 讨论函数的单调区间;

(II)当时,若函数在区间上的最大值为3,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形ABCD的对角线AC=10,BD=6,M、N分别为AB、CD的中点,MN=7,则异面直线AC和BD所成的角等于(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, 已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设是曲线上两点,点关于轴的对称点为 (异于点),若直线分别交轴于点,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,△PAB为正三角形,四边形ABCD为矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分别为PB,PC中点.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大小;
(Ⅲ)在BC上是否存在点E,使得EN⊥平面AMN?若存在,求 的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案