精英家教网 > 高中数学 > 题目详情

(本大题10分)求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且满足下列条件的直线方程

(1)与直线2x + y + 5 = 0平行 ;

(2)与直线2x + y + 5 = 0垂直;

 

【答案】

(1);(2)

【解析】

试题分析:先通过两直线方程联立解方程组求出交点坐标.(1)根据两直线平行,斜率相等,设出所求直线方程,将交点坐标代入即可求出平行直线的方程.

(2)根据两直线垂直,斜率之积等于-1,设出所求直线的斜截式方程,然后将交点坐标代入所求直线的方程,即可得解.

解得--------2分

所以交点(-1,2)

(1)-----4分

直线方程为--------6分

(2)---------8分

直线方程为--------10分.

考点:两直线平行与垂直的判定..

点评:两直线平行:斜率都不存在或斜率相等.两直线垂直:斜率之积等于-1或一条直线的斜率不存在,另一条斜率等于0.

 

练习册系列答案
相关习题

科目:高中数学 来源:2011年山东省济南外国语学校高一入学检测数学试卷 题型:解答题

((本小题12分)
经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕头市高三上学期期中文科数学试卷(解析版) 题型:解答题

(本小题满分14分)某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系:

Q=

 
         [

         [

 (1)求总利润(利润=销售额-成本)y(元)与销售价x(件)的函数关系式;

 (2)试问:当实际销售价为多少元时,总利润最大.

 

 

查看答案和解析>>

科目:高中数学 来源:2011年山东省高一入学检测数学试卷 题型:解答题

((本小题12分)

经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.

(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;

(2)求该种商品的日销售额y的最大值与最小值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省高三学情调研考试数学卷 题型:解答题

(本小题满分14分)

    某专卖店经市场调查得知,一种商品的月销售量Q(单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.

   (1)写出月销售量Q关于销售价格的函数关系;

   (2)如果该商品的进价为5万元/吨,除去进货成本外,专卖店销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.

                                 

                                 

 

查看答案和解析>>

科目:高中数学 来源:2010年山西省临汾市高一年级学段考试数学试卷 题型:解答题

(本小题满分10分)

某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).

(1)根据图象,求一次函数的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,

①求S关于的函数表达式;

②求该公司可获得的最大毛利润,并求出此时相应的销售单价.

 

查看答案和解析>>

同步练习册答案