精英家教网 > 高中数学 > 题目详情

【题目】某校高三年级有1000人,某次数学考试不同成绩段的人数

(1)求该校此次数学考试平均成绩;

(2)计算得分超过141的人数;

(3)甲同学每次数学考试进入年级前100名的概率是,若本学期有4次考试, 表示进入前100名的次数,写出的分布列,并求期望与方差.

【答案】(1)23;(2)见解析

【解析】试题分析:1由不同成绩段的人数服从正态分布,可知平均成绩;(2141分以上的人数为;(3的取值范围为0,1,2,3,4,求出相应的概率值,得到分布列及期望与方差.

试题解析:

(1)由不同成绩段的人数服从正态分布,可知平均成绩.

2

故141分以上的人数为人.

3的取值范围为0,1,2,3,4,

的分布列为:

0

1

2

3

4

期望

方差

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示。

1)求第345组的频率;

2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,求第345组每组各抽取多少学生进入第二轮面试?

3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值和最小值.

1)求的值

2)若不等式上有解,求实数的取值范围;

3)若有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:

具体过程如下:

如图,在平面直角坐标系内作单位圆O,以为始边作角.它们的终边与单位圆O的交点分别为AB.

由向量数量积的坐标表示,有:

的夹角为θ,则

另一方面,由图3.131)可知,;由图可知,

.于是.

所以,也有

所以,对于任意角有:

此公式给出了任意角的正弦、余弦值与其差角的余弦值之间的关系,称为差角的余弦公式,简记作.

有了公式以后,我们只要知道的值,就可以求得的值了.

阅读以上材料,利用下图单位圆及相关数据(图中MAB的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题:

1)判断是否正确?(不需要证明)

2)证明:

3)利用以上结论求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(一)在函数图象的学习中常常用到化归转化的思想,往往通过对一些已经学习过的函数图象的研究,进一步迁移到其它函数,例如函数与正弦函数就有密切的联系,因为.只需将轴下方的图象翻折到上方,就得到的图象.

(二)在研究函数零点问题时,往往会将函数零点问题转化为两个函数图象的交点问题.例如研究函数的零点就可以转化为函数与函数的图象交点来进行处理,通过作图不仅知道函数有且仅有一个零点,还可以确定零点.这体现了化归转化与数形结合的思想在函数研究中的应用.

结合阅读材料回答下面两个问题:

作出函数的图象;

利用作图的方法验证函数有且仅有两个零点.若记两个零点分别为,证明:.(注:在同一坐标中作图)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,分别是线段的中点,,直线与平面所成的角等于

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72108120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.

项目

员工

A

B

C

D

E

F

子女教育

×

×

继续教育

×

×

×

大病医疗

×

×

×

×

×

住房贷款利息

×

×

住房租金

×

×

×

×

×

赡养老人

×

×

×

1)应从老、中、青员工中分别抽取多少人?

2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为ABCDEF.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.

①试用所给字母列举出所有可能的抽取结果;

②设M为事件抽取的2人享受的专项附加扣除至少有一项相同,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)=x3﹣3x,过点P(2,2)作函数yfx)图象的切线,则切线方程为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三角形面积为S=(a+b+c)r,a,b,c为三角形三边长,r为三角形内切圆半径,利用类比推理,可以得出四面体的体积为 ( )

A. V=abc B. V=Sh

C. V=(ab+bc+ac)·h(h为四面体的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径,设四面体的内切球的球心为O,则球心O到四个面的距离都是r)

查看答案和解析>>

同步练习册答案