精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)对于任意的x∈R,都有f(x+2)=-f(x)成立,设an=f(n),则数列{an}中值不同的项最多有________项.

4
分析:由题设条件定义在R上的函数f(x)对于任意的x∈R,都有f(x+2)=-f(x)成立,可得出函数是以4为同期的函数,则相应的数列也是以四为周期的,由此得出数列中不同的项最多有4项.
解答:由题设条件,(x)对于任意的x∈R,都有f(x+2)=-f(x)成立
∴f(x+2)=-f(x)=f(x-2),即T=4
因为an=f(n),所以an+4=f(n+4)=f(n)=an
故a4n+1=a1,a4n+2=a2,a4n+3=a3,a4n+4=a4
∴数列{an}中值不同的项最多有4项
故答案为4
点评:本题考查数列的函数特性周期性,数列是一个离散的函数,故对数列的研究往往要借助函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案