精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,

求证:GM∥平面ABFE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1.

(1)求证:AF∥平面BDE;
(2)求证:CF⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在锥体PABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分别是BC、PC的中点.证明:AD⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBCABBCASAB.过AAFSB,垂足为F,点EG分别是棱SASC的中点.

求证:(1)平面EFG∥平面ABC;(2)BCSA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中.

(1)求证:平面
(2)求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)试判断直线DF与平面BCE的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,PA⊥底面ABCDPCAD,底面ABCD为梯形,ABDCABBCPAABBC,点E在棱PB上,且PE=2EB.

(1)求证:平面PAB⊥平面PCB
(2)求证:PD∥平面EAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,,点是棱上的一个动点.

(1)证明:
(2)当的中点时,求点到面的距离;
(3)线段的长为何值时,二面角的大小为.

查看答案和解析>>

同步练习册答案