精英家教网 > 高中数学 > 题目详情

如图,在长方体 中点.

(1)求证:
(2)在棱上是否存在一点,使得平面若存在,求的长;若不存在,说明理由.

(1)见解析(2)为线段的中点,

解析试题分析:(1)连接确定一个平面。又侧面是正方形,
,又平面平面

(2)设,连接,则四边形为平行四边形。因而平面。即为线段的中点,
考点:空间线面的平行垂直关系
点评:本题还可应用空间向量的方法求解,特别是第二小题求点位置

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.(本题满分12分) 如图,PA垂直于矩形ABCD所在的平面, ,E、F分别是AB、PD的中点.

(1)求证:平面PCE 平面PCD;
(2)求三棱锥P-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知:正方体中,棱长分别为的中点,的中点,

(1)求证://平面
(2)求:到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知平面//平面,AB、CD是夹在间的两条线段,A、C在内,B、D在内,点E、F分别在AB、CD上,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.

(1)求证:平面平面
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1
(3)求四面体EFGB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四面体中,,的中点.

(1)求证:平面
(2)设的重心,是线段上一点,且.求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面,底面是菱形,点O是对角线的交点,的中点,.

(1) 求证:平面;
(2) 平面平面;
(3) 当四棱锥的体积等于时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在三棱锥中,面是正三角形,
(Ⅰ)求证:
(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案