精英家教网 > 高中数学 > 题目详情
1.若数列{an}满足an+1+an=2n+1(n∈N*),则a1+a100=101.

分析 利用a1+a100=$\sum_{k=1}^{50}$(a2k-1+a2k)-$\sum_{k=1}^{49}$(a2k+a2k+1)计算即得结论.

解答 解:依题意,a1+a100=$\sum_{k=1}^{50}$(a2k-1+a2k)-$\sum_{k=1}^{49}$(a2k+a2k+1
=$\sum_{k=1}^{50}$(4k-1)-$\sum_{k=1}^{49}$(4k+1)
=4•$\frac{50•51}{2}$-50-(4•$\frac{49•50}{2}$+49)
=101,
故答案为:101.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①函数y=cos(x+$\frac{π}{2}$)是偶函数;
②y=lg(sin($\frac{π}{4}$-x))的单调递增区间为(2kπ+$\frac{5π}{4}$,2kπ+$\frac{7π}{4}$],k∈Z;
③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{π}{4}$)图象的一条对称轴;
④函数y=sin(x+$\frac{π}{6}$)在(-$\frac{π}{2}$,$\frac{π}{3}$)上是单调增函数;
⑤点($\frac{π}{6}$,0)是函数y=tan(x+$\frac{π}{3}$)图象的对称中心;
⑥若f(sinx)=cos6x,则f(cos15°)=0.
其中正确命题的序号是③④⑤⑥.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:$\frac{1}{x-1}$+$\frac{1}{x+1}$+$\frac{2x}{{x}^{2}+1}$+$\frac{4{x}^{3}}{{x}^{4}+1}$=$\frac{8{x}^{7}}{{x}^{8}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg2≈0.3010,100.0075≈1.017)(  )
A.1.5%B.1.6%C.1.7%D.1.8%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中错误的是(  )
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内有且只有一条直线垂直于平面β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.作出函数y=$\frac{x+3}{x-1}$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}是公差不为0的等差数列,它的前10项和S10=110,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}}{1+2{a}_{n}}$.
(1)求证:{$\frac{1}{{a}_{n}}$}为等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cosx-sin2x.
(1)判断该函数的奇偶性;
(2)求f(x)的最小值.

查看答案和解析>>

同步练习册答案