【题目】已知函数.
()讨论函数在定义域内的极值点的个数.
()若函数在处取得极值,且对,恒成立,求实数的取值范围.
()当且时,试比较与的大小.
【答案】见解析.
【解析】分析:(1)求出函数的定义域和导函数,通过讨论的符号确定导函数的符号变化,进而得到函数的单调性和极值点的个数;(2)先利用(1)求出,再分离参数,将不等式恒成立问题转化为求函数的最值问题;(3)利用(2)结论合理赋值即可.
解析:()函数的定义域为,.
①当时,在上恒成立,在上单调递减,
∴在上没有极值点.
②当时,令得,
令得,
∴在上单调递减,在上单调递增,
∴在处有极小值,
;
综上所述,当时,在上没有极值点,
当时,在上有一个极值点.
()∵函数在处有极值,
∴由()可知,解得:,
∴,
对,恒成立,等价于,恒成立,
则,
令,则,
令,解得,令,解得,
∴在上单调递减,在上单调递增,
在处取得最小值,,
∴,
故实数的取值范围是.
()由()知在上为减函数,
∴且时,有,
即,整理得①,
当时,,由①得,;
当时,,由①得,.
科目:高中数学 来源: 题型:
【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在上海自贸区的利好刺激下,公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为、和(单位:万件),依据销售统计数据发现形成如下营销趋势:,(其中,为常数,),已知万件,万件,万件.
(1)求,的值,并写出与满足的关系式;
(2)证明:逐月递增且控制在2万件内;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,摩天轮的半径为,点距地面的高度为,摩天轮按逆时针方向作匀速运动,且每转一圈,摩天轮上点的起始位置在最高点.
(1)试确定点距离地面的高度(单位:)关于旋转时间(单位:)的函数关系式;
(2)在摩天轮转动一圈内,有多长时间点距离地面超过?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为的正方体中,O是AC的中点,E是线段D1O上一点,且D1E=λEO.
(1)若λ=1,求异面直线DE与CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有 (n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn .
(1)求p2的值;
(2)证明:pn> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为- .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,,是数列的前项的和.
(1)求数列的通项公式;
(2)若,,成等差数列,,18,成等比数列,求正整数的值;
(3)是否存在,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com