精英家教网 > 高中数学 > 题目详情

【题目】已知点,在抛物线上,的重心与此抛物线的焦点重合(如图)

(I)写出该抛物线的方程和焦点的坐标;

(II)求线段中点的坐标;

(III)求弦所在直线的方程

【答案】1)抛物线方程为,焦点F的坐标为(80)。.

2M的坐标为(11,-4)。

3BC所在直线的方程为:

【解析】

解:(1)由点A28)在抛物线上,有

解得p="16." 所以抛物线方程为,焦点F的坐标为(80

2)由于F80)是△ABC的重心,MBC的中点,所以FAM的比为21,即,设点M的坐标为,则

解得, 所以点M的坐标为(11,-4

3)由于线段BC的中点M不在x轴上,所以BC所在

的直线不垂直于x.BC所在直线的方程为:

x

所以,由(2)的结论得,解得

因此BC所在直线的方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函数f(x)=1﹣
(1)若x∈[0, ],求函数f(x)的值域;
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点O,焦点在x轴上,离心率为 ,椭圆C上的点到右焦点的最大距离为3.
(1)求椭圆C的标准方程;
(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2 + |=|2 |,求直线在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆经过点,离心率为

(1)求的方程;

(2)过的左焦点且斜率不为的直线相交于两点,线段的中点为,直线与直线相交于点,若为等腰直角三角形,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣2sin2x+2 sinxcosx+1.
(1)求f(x)的最小正周期及对称中心;
(2)若x∈[﹣ ],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用 (单位:万元)和利润 (单位:十万元)之间的关系,得到下列数据:

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

请回答:

(Ⅰ)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(Ⅱ)根据1的判断结果,建立之间的回归方程,并预测当时,对应的利润为多少(精确到).

附参考公式:回归方程中最小二乘估计分别为,,

相关系数.

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是(
①对于命题p:x∈R,使得x2+x﹣1<0,则¬p:x∈R,均有x2+x﹣1>0;
②p是q的必要不充分条件,则¬p是¬q的充分不必要条件;
③命题“若x=y,则sinx=siny”的逆否命题为真命题;
④“m=﹣1”是“直线l1:mx+(2m﹣1)y+1=0与直线l2:3x+my+3=0垂直”的充要条件.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是无穷数列,满足lgan+1=|lgan﹣lgan1|(n=2,3,4,…).
(1)若a1=2,a2=3,求a3 , a4 , a5的值;
(2)求证:“数列{an}中存在ak(k∈N*)使得lgak=0”是“数列{an}中有无数多项是1”的充要条件;
(3)求证:在数列{an}中ak(k∈N*),使得1≤ak<2.

查看答案和解析>>

同步练习册答案