精英家教网 > 高中数学 > 题目详情

【题目】n个不同的实数a1a2an可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第iai1ai2ain,记bi=ai1+2ai23ai3+…+(1)nnaini=123…n.例如用123可得数阵如图,对于此数阵中每一列各数之和都是12,所以bl+b2+…b6=12+2×123×12=24.那么,在用12345形成的数阵中,b1+b2+…b120等于(

A.3600B.1800C.1080D.720

【答案】C

【解析】

根据用12345形成的数阵和每个排列为一行写成一个n!行的数阵,得到数阵中行数,然后求得每一列各数字之和,再代入公式求解.

由题意可知:数阵中行数为:

在用12345形成的数阵中,

每一列各数字之和都是:

.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是无穷数列.给出两个性质:

①对于中任意两项,在中都存在一项,使

②对于中任意项,在中都存在两项.使得

(),判断数列是否满足性质①,说明理由;

(),判断数列是否同时满足性质①和性质②,说明理由;

()是递增数列,且同时满足性质①和性质②,证明:为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,问立夏日影长为(

A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,P为线段上的动点,下列说法正确的是(

A.对任意点P平面

B.三棱锥的体积为

C.线段DP长度的最小值为

D.存在点P,使得DP与平面所成角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的20191月至201911月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是(

A.月跑步里程最小值出现在2

B.月跑步里程逐月增加

C.月跑步里程的中位数为5月份对应的里程数

D.1月至5月的月跑步里程相对于6月至11月波动性更小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的角ABC的对边分别为abc,已知.

1)求角A

2)从三个条件:①;②;③的面积为中任选一个作为已知条件,求周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱台中,底面是菱形,底面,且60°是棱的中点.

1)求证:

2)求直线与平面所成线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆分别为椭圆长轴的左、右端点,为直线上异于点的任意一点,连接交椭圆于.

1)若,求直线的方程;

2)是否存在轴上的定点使得以为直径的圆恒过的交点?如果存在,请求出定点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,曲线C1C2在第一象限交于点A

1)求点A的直角坐标;

2)直线与曲线C1C2在第一象限分别交于点BC,若△ABC的面积为,求α的值.

查看答案和解析>>

同步练习册答案