【题目】已知等比数列{an}中,a2=1,则其前三项和S3的取值范围是 .
【答案】(﹣∞,﹣1]∪[3,+∞)
【解析】解:由等比数列的性质可知:a22=a1a3=1, 当公比q>0时,得到a1>0,a3>0,
则a1+a3≥2 =2 =2,所以S3=a1+a2+a3=1+a1+a3≥1+2=3;
当公比q<0时,得到a1<0,a3<0,
则(﹣a1)+(﹣a3)≥2 =2 =2,即a1+a3≤﹣2,所以S3=a1+a2+a3=1+a1+a3≤1+(﹣2)=﹣1,
所以其前三项和s3的取值范围是(﹣∞,﹣1]∪[3,+∞).
所以答案是:(﹣∞,﹣1]∪[3,+∞)
【考点精析】根据题目的已知条件,利用等比数列的前n项和公式的相关知识可以得到问题的答案,需要掌握前项和公式:.
科目:高中数学 来源: 题型:
【题目】已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站毎年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/t和1.5元/t,乙煤矿运往东车站和西车站的运费价格分别为0.8元/t和1.6元/t.煤矿应怎样编制调运方案,能使总运费最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的三个内角A、B、C所对的边分别为a、b、c,1+ = .
(1)求A的大小;
(2)若△ABC为锐角三角形,求函数y=2sin2B﹣2cosBcosC的取值范围;
(3)现在给出下列三个条件:①a=1;②2c﹣( +1)b=0;③B=45°,试从中再选择两个条件,以确定△ABC,求出所确定的△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =({cosx,﹣ cosx), =(cosx,sinx),函数f(x)= +1. (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)= , 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 已知S2=4,an+1=2Sn+1,n∈N* .
(1)求通项公式an;
(2)求数列{|an﹣n﹣2|}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某位篮球运动员8场比赛得分的茎叶图,其中一个数据染上污渍用x代替,则这位运动员这8场比赛的得分平均数不小于得分中位数的概率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com