精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)若与平行的直线与曲线交于两点.且在轴的截距为整数,的面积为,求直线的方程.

【答案】(Ⅰ).(Ⅱ)

【解析】

(Ⅰ)利用消参法将参数方程转化为普通方程,由极坐标与直角坐标方程转化公式,即可得直线的直角坐标方程.

(Ⅱ)由平行,可设直线,利用点到直线距离公式求得到直线的距离,由圆的几何性质求得,结合三角形面积公式即可求得整数的值.

(Ⅰ)曲线C的参数方程,化为普通方程为

因为,代入可得直线的直角坐标方程为

(Ⅱ)由(Ⅰ)知的直角坐标方程为

设直线,由题知

所以到直线的距离

所以

的面积为,所以

整理得

所以

因为,所以

所以直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,则下列命题正确的是(

A.时,

B.函数3个零点

C.的解集为

D.,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调区间;

2)若不等式时恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点坐标是,过点且垂直于长轴的直线交椭圆于两点,且.

1)求椭圆的标准方程;

2)过点的直线与椭圆交于不同的两点,问三角形内切圆面积是否存在最大值?若存在,请求出这个最大值及此时直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若有两个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在它们的交点处具有相同的切线.

1)求的解析式;

2)若函数有两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)若函数存在两个极值点(其中),且的取值范围为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)若与平行的直线与曲线交于两点.且在轴的截距为整数,的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为双曲线的一个焦点,过的一条渐近线的垂线,垂足为点的另一条渐近线交于点,若,则的离心率为(

A.2B.C.D.

查看答案和解析>>

同步练习册答案