精英家教网 > 高中数学 > 题目详情
已知p:x2-4ax+3a2<0(a≠0),q:x2-2x-3<0,若p是q的充分条件,求实数a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:先求出p和q,再根据a<0和a>0分类讨论,利用p是q的充分条件,问题得以解决
解答: 解:p:x2-4ax+3a2<0(a≠0),即(x-3a)(x-a)<0
q:x2-2x-3<0,解得-1<x<3
若a<0,则p:3a<x<a,q:-1<x<3.
∵p是q的充分条件,
∴-1≤3a<a≤3,
解得a的取值范围为-
1
3
≤a<0,
若a>0,则p:a<x<3a,q:-1<x<3.
∵p是q的充分条件,
∴-1≤a<3a≤3,
解得a的取值范围是0<a≤1.
故实数a的取值范围为:[-
1
3
,0)∪(0,1]
点评:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,但解题的关键是不等式的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:
(1)f(5)=0;
(2)f(x)在[1,2]上是减函数;
(3)函数y=f(x)没有最小值;
(4)函数f(x)在x=0处取得最大值;
(5)f(x)的图象关于直线x=1对称.
其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数学归纳法证明:1+2+3+…+2n=n(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD的顶点A(m,n),B(6,1),C(3,3),D(2,5),求m和n的值,使四边形ABCD为直角梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
cos2α
cosα[1+tan(-α)]
=
2
3
,则sin2α+cos(α-
π
4
)等于(  )
A、-
4
9
B、
4
9
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A为平面α内一定点,AB是平面α的定长斜线段,A为斜足,若点P在平面α内运动,使△ABP面积为定值,则动点P的轨迹是(  )
A、圆B、两条平行线
C、一条直线D、椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品原来的年产量为1万吨,计划从今年开始,年产量平均增长10%.
(1)若经过x年,年产量为y万吨,试写出y与x的函数关系,并写出定义域;
(2)问经过几年,年产量可以达2.36万吨?(结果保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a+2,a+1,a2+3a+3},且1∈A,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|,a是正常数.
(1)如果函数f(x+2)是偶函数,求实数a的值
(2)如果函数f(x+2)在(2,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案