精英家教网 > 高中数学 > 题目详情

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

 

 

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)证明:无论点E在BC边的何处,都有PE⊥AF;

(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

 

【答案】

 

【解析】(1)证明详见解析;(2)

试题分析:(1)以A为原点,AD,AB,AP分别为x轴,y轴,z轴建立空间直角坐标系,求证 =0即可;(2)求出表示平面PDE的一个法向量的坐标,由向量的夹角公式和已知条件可得到一个方程,解之即可.

试题解析:解:(1) 建立如图所示空间直角坐标系,

 

则P(0,0,1),B(0,1,0),

  设

∴AF⊥PE 

(2)设平面PDE的法向量为,由 得,而,

因为PA与平面PDE所成角的大小为45°,

所以sin45°=  ,即 ,得BE=x= ,

或BE=x=(舍去).

考点:1.向量数量积的性质;2.向量夹角公式的应用.

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年湖南省常德市高三质量检测考试数学理卷 题型:解答题

     (本小题12分)

如图3,已知在侧棱垂直于底面

的三棱柱中,AC=BC, AC⊥BC,点D是A1B1中点.

(1)求证:平面AC1D⊥平面A1ABB1;

(2)若AC1与平面A1ABB1所成角的正弦值

,求二面角D- AC1-A1的余弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河北省高三高考压轴模拟考试文数 题型:解答题

(本小题12分)如图,四棱锥中,

侧面是边长为2的正三角形,且与底面垂直,底面的菱形,的中点.

(1)与底面所成角的大小;

(2)求证:平面

(3)求二面角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2014届海南省高一上学期教学质量监测三数学 题型:解答题

(本小题12分)如图,四棱锥中,底面是正方形,, 底面,    分别在上,且

(1)求证:平面∥平面

(2)求直线与平面面所成角的正弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年海南省高二下学期质量检测数学文卷(一) 题型:解答题

(本小题12分)

如图:⊙O为△ABC的外接圆,AB=AC,过点A的直线交⊙O于D,交BC延长线于F,DE是BD的延长线,连接CD。

①  求证:∠EDF=∠CDF;   

②求证:AB2=AF·AD。

 

 

查看答案和解析>>

科目:高中数学 来源:2009-2010集宁一中学高三年级理科数学第一学期期末考试试题 题型:解答题

(本小题12分)如图,四面体ABCD中,O、E分别是BD、BC的中点,

    (I)求证:平面BCD;

    (II)求异面直线AB与CD所成角的大小;

    (III)求点E到平面ACD的距离。

 

查看答案和解析>>

同步练习册答案