精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, ,…,即当 <n≤ (k∈N*)时, .记Sn=a1+a2+…+an(n∈N).对于l∈N , 定义集合Pl=﹛n|Sn为an的整数倍,n∈N , 且1≤n≤l}
(1)求P11中元素个数;
(2)求集合P2000中元素个数.

【答案】
(1)

解:由数列{an}的定义得a1=1,a2=﹣2,a3=﹣2,a4=3,

a5=3,a6=3,a7=﹣4,a8=﹣4,a9=﹣4,a10=﹣4,a11=5,

所以S1=1,S2=﹣1,S3=﹣3,S4=0,S5=3,S6=6,S7=2,

S8=﹣2,S9=﹣6,S10=﹣10,S11=﹣5,

从而S1=a1,S4=0a4,S5=a5,S6=2a6,S11=﹣a11

所以集合P11中元素的个数为5;


(2)

解:先证:Si2i+1=﹣i(2i+1)(i∈N*).

事实上,①当i=1时,Si2i+1=S3=﹣3,﹣i(2i+1)=﹣3,故原等式成立;

②假设i=m时成立,即Sm2m+1=﹣m(2m+1),则i=m+1时,

Sm+1)(2m+3=Sm2m+1+(2m+1)2﹣(2m+2)2=﹣m(2m+1)﹣4m﹣3

=﹣(2m2+5m+3)=﹣(m+1)(2m+3).

综合①②可得Si2i+1=﹣i(2i+1).于是Si+1)(2i+1=Si2i+1+(2i+1)2

=﹣i(2i+1)+(2i+1)2=(2i+1)(i+1).

由上可知Si2i+1是2i+1的倍数,而ai2i+1+j=2i+1(j=1,2,…,2i+1),

所以Si2i+1+j=Si2i+1+j(2i+1)是ai2i+1+j(j=1,2,…,2i+1)的倍数.

又Si+1)(2i+1=(i+1)(2i+1)不是2i+2的倍数,

而ai+1)(2i+1+j=﹣(2i+2)(j=1,2,…,2i+2),

所以Si+1)(2i+1+j=Si+1)(2i+1+j(2i+2)=(2i+1)(i+1)﹣j(2i+2)

不是ai+1)(2i+1+j(j=1,2,…,2i+2)的倍数,

故当l=i(2i+1)时,集合Pl中元素的个数为1+3+…+(2i﹣1)=i2

于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合Pl中元素的个数为i2+j.

又2000=31×(2×31+1)+47,

故集合P2 000中元素的个数为312+47=1008.


【解析】(1)由数列{an}的定义,可得前11项,进而得到前11项和,再由定义集合Pl , 即可得到元素个数;(2)运用数学归纳法证明Si2i+1=﹣i(2i+1)(i∈N*).再结合定义,运用等差数列的求和公式,即可得到所求.
【考点精析】通过灵活运用数学归纳法的定义,掌握数学归纳法是证明关于正整数n的命题的一种方法即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:x2=2py(p>0),点A(p, )到抛物线C1的准线的距离为2.
(1)求抛物线C1的方程;
(2)过点A作圆C2:x2+(y﹣a)2=1的两条切线,分别交抛物线于M,N两点,若直线MN的斜率为﹣1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是(  )

x

6

8

10

12

y

6

m

3

2

A. 变量之间呈现负相关关系

B. 的值等于5

C. 变量之间的相关系数

D. 由表格数据知,该回归直线必过点(9,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励市民节约用电,实行“阶梯式”电价,某边远山区每户居民月用电量划分为三档:月用电量不超过150度,按0.6元/度收费,超过150度但不超过250度的部分每度加价0.1元,超过250度的部分每度再加价0.3元收费.

(1)求该边远山区某户居民月用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

(2)已知该边远山区贫困户的月用电量(单位:度)与该户长期居住的人口数(单位:人)间近似地满足线性相关关系:的值精确到整数),其数据如表:

14

15

17

18

161

168

191

200

现政府为减轻贫困家庭的经济负担,计划对该边远山区的贫困家庭进行一定的经济补偿,给出两种补偿方案供选择:一是根据该家庭人数,每人每户月补偿6元;二是根据用电量每人每月补偿为用电量)元,请根据家庭人数分析,一个贫困家庭选择哪种补偿方式可以获得更多的补偿?

附:回归直线中斜率和截距的最小二乘法估计公式分别为:

.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,2a9a12+13a37,其前n项和为Sn

1)求数列{an}的通项公式;

2)求数列{}的前n项和Tn,并证明Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为a,b,c,设S为△ABC的面积,满足Sa2+c2b2).

1)求角B的大小;

2)若边b,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.

(1)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);
(2)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)当时,讨论的单调性;

3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案