精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的离心率,抛物线的焦点恰好是椭圆的右焦点

(1)求椭圆的标准方程;

(2)过点作两条斜率都存在的直线,设与椭圆交于两点,与椭圆交于两点,若的等比中项,求的最小值.

【答案】1;(2.

【解析】

1)求出抛物线的焦点可得,再根据离心率求得,从而可得,进而可得结果;(2)先利用勾股定理证明,可设直线,直线,分别与椭圆方程联立,根据韦达定理,两点间距离公式求得 ,化为,利用基本不等式求解即可.

1)依题意得椭圆C的右焦点F的坐标为,即

所以,故椭圆C的标准方程为.

2)因为的等比中项,

所以,即

所以直线

又直线的斜率均存在,

所以两直线的斜率都不为零,

故可设直线,直线

消去x,得

所以

同理得,

所以

,

,

,所以

(当且仅当时取等号),

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

,求的单调区间;

是否存在实数a,使的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用0,1,2,3,4这五个数字组成无重复数字的自然数.

(1)在组成的五位数中,所有奇数的个数有多少?

(2)在组成的五位数中,数字1和3相邻的个数有多少?

(3)在组成的五位数中,若从小到大排列,30124排第几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),过点的直线的参数方程为为参数).

(Ⅰ)求曲线的普通方程,并说明它表示什么曲线;

(Ⅱ)设曲线与直线分别交于两点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求曲线在点处的切线方程;

(2)若函数上恰有2个零点,求的取值范围;

(3)当时,若对任意的正整数在区间上始终存在个整数使得成立试问:正整数是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于同一个常数.若第一个单音的频率为f,第三个单音的频率为,则第十个单音的频率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数在定义域上的单调性;

(2)令函数,是自然对数的底数,若函数有且只有一个零点,判断的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)当时,,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,表示活动推出的天数, 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:

根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内, (均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的 人次;

(3)推广期结束后,为更好的服务乘客,车队随机调查了人次的乘车支付方式,得到如下结果

已知该线路公交车票价,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据调查结果发现:使用扫码支付的乘客中有名乘客享受折优惠,名乘客享受折优惠,名乘客享受折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.

参考数据:

其中

参考公式

对于一组数据其回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案