精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,证明:

(2)若关于的方程有且只有一个实根,求实数的取值范围.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

(1)时,构造函数则当时, 单调递减,当时, 单调递增. 据此可得.

(2)构造函数,令 分类讨论:

①当时, ,此时有一个零点,

②当时,

时, 有一个零点,

时, 有一个零点,

时, 有一个零点,

综上可知,当方程有且只有一个实根时, 的取值范围是.

试题解析:

1)当时,令

故当时, ,所以单调递减,

时, ,所以单调递增.

所以,所以.

2)令

①当时, 在区间上的情况如下:

,此时有一个零点,

②当时,

时,即时,

在区间上的情况如下:

所以极小值为,极大值为

的图象可知有一个零点,

时,

在区间上的情况如下:

所以函数的极小值为,极大值为

的图象可知有一个零点,

,即时,

为单调递减函数,由的图象知有一个零点,

综上可知,当方程有且只有一个实根时, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )

A. B. C. D.

【答案】D

【解析】在三棱锥中,因为 ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.

点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.

型】单选题
束】
21

【题目】已知函数,则的大致图象为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆经过不同的三点在第三象限),线段的中点在直线上.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设点是椭圆上的动点(异于点且直线分别交直线两点,问是否为定值?若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台问政直播节目首场内容是“让交通更顺畅”.ABCD四个管理部门的负责人接受问政,分别负责问政ABCD四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:

满意

一般

不满意

A部门

50%

25%

25%

B部门

80%

0

20%

C部门

50%

50%

0

D部门

40%

20%

40%

(1)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;

(2)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求平面与平面所成二面角的大小;

2)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列满足,若存在两项,使得,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体 是正方形 是梯形 平面 分别为棱的中点

求证:平面平面

求平面和平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的右焦点, 上的任意一点.

(1)求的取值范围;

(2)上异于的两点,若直线与直线的斜率之积为,证明: 两点的横坐标之和为常数.

查看答案和解析>>

同步练习册答案