【题目】下列命题中,正确的命题有__________.
①回归直线恒过样本点的中心,且至少过一个样本点;
②将一组数据的每个数据都加一个相同的常数后,方差不变;
③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;
④若分类变量和的随机变量的观测值越大,则“与相关”的可信程度越小;
⑤.对于自变量和因变量,当取值一定时, 的取值具有一定的随机性, , 间的这种非确定关系叫做函数关系;
⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适;
⑦.两个模型中残差平方和越小的模型拟合的效果越好.
科目:高中数学 来源: 题型:
【题目】设双曲线x2﹣ =1的左、右焦点分别为F1、F2 , 若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】探究函数的最小值,并确定取得最小值时x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 4.8 | 7.57 | … |
请观察表中y值随x值变化的特点,完成以下的问题.
函数在区间(0,2)上递减;
函数在区间 上递增.
当 时, .
证明:函数在区间(0,2)递减.
思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 数列{ }的公差为1的等差数列,且a2=3,a3=5.
(1)求数列{an}的通项公式;
(2)设bn=an3n , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.
(1)确定点G的位置,使得FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点、在轴上,离心率为,在椭圆上有一动点与、的距离之和为4,
(Ⅰ) 求椭圆E的方程;
(Ⅱ) 过、作一个平行四边形,使顶点、、、都在椭圆上,如图所示.判断四边形能否为菱形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在2060岁的问卷中随机抽取了100份, 统计结果如下面的图表所示.
年龄 分组 | 抽取份 数 | 答对全卷的人数 | 答对全卷的人数占本组的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | n | 27 | 0.9 |
[40,50) | 10 | 4 | b |
[50,60] | 20 | a | 0.1 |
(1)分别求出n, a, b, c的值;
(2)从年龄在[40,60]答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[50,60] 的人中至少有1人被授予“环保之星”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com