精英家教网 > 高中数学 > 题目详情

【题目】袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生之间取整数值的随机数,分别用代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:

由此可以估计,恰好第三次就停止摸球的概率为( )

A. B. C. D.

【答案】B

【解析】

随机模拟产生了18组随机数,其中第三次就停止摸球的随机数有4个,由此可以估计,恰好第三次就停止摸球的概率.

随机模拟产生了以下18组随机数:

343 432 341 342 234 142 243 331 112

342 241 244 431 233 214 344 142 134

其中第三次就停止摸球的随机数有:142,112,241,142,共4个,

由此可以估计,恰好第三次就停止摸球的概率为p

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为响应“文化强国建设”号召,并增加学生们对古典文学的学习兴趣,雅礼中学计划建设一个古典文学熏陶室.为了解学生阅读需求,随机抽取200名学生做统计调查.统计显示,男生喜欢阅读古典文学的有64人,不喜欢的有56人;女生喜欢阅读古典文学的有36人,不喜欢的有44.

(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?

(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知f(x)=|x+a|(a∈R).

(1)若f(x)≥|2x﹣1|的解集为[0,2],求a的值;

(2)若对任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是连续的偶函数,且时, 是单调函数,则满足的所有之积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若存在常数M>0,对任意的nN*,恒有,则称数列B-数列.

(1)首项为1,公比q()的等比数列是否为B-数列?请说明理由;

(2)Sn是数列{xn}的前n项和,给出下列两组论断:

A组:①数列{xn}B-数列,②数列{xn}不是B-数列

B组:①数列{Sn}B-数列,②数列{Sn}不是B-数列

请以其中一组的一个论断为条件,另一组的一个论断为结论组成一个命题.判断所给命题的真假,并证明你的结论.

(3)若数列{an}、都是B-数列,证明:数列{anbn}也是B-数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校2011年到2019年参加北约”“华约考试而获得加分的学生人数(每位学生只能参加北约”“华约中的一种考试)可以通过以下表格反映出来.(为了方便计算,将2011年编号为12012年编号为2,依此类推)

年份x

1

2

3

4

5

6

7

8

9

人数y

2

3

5

4

5

7

8

10

10

1)求这九年来,该校参加北约”“华约考试而获得加分的学生人数的平均数和方差;

2)根据最近五年的数据,利用最小二乘法求出yx的线性回归方程,并依此预测该校2020年参加北约”“华约考试而获得加分的学生人数.(最终结果精确至个位)

参考数据:回归直线的方程是,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),直线与直线平行,且过坐标原点,圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)设直线和圆相交于点两点,求的周长.

查看答案和解析>>

同步练习册答案