精英家教网 > 高中数学 > 题目详情
△ABC的内角A,B,C所对的边分别为a,b,c,且acosC+
1
2
c=b

(1)求角A的大小;
(2)若△ABC的周长为3,求△ABC的面积的最大值.
∵acosC+
1
2
c=b,
∴sinAcosC+
1
2
sinC=sinB=sin(A+C)=sinAcosC+cosAsinC,
整理得:
1
2
sinC=cosAsinC,
∵sinC≠0,
∴cosA=
1
2

∵A为三角形内角,
∴A=60°;
(2)∵A=60°,
∴a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
∴a≥
bc

∴3=a+b+c≥
bc
+b+c≥
bc
+2
bc
=3
bc
,即bc≤1,
∴S=
1
2
bcsinA=
3
4
bc≤
3
4
,当且仅当b=c=a=1时,取得最大值
3
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为绘制海底地貌图,测量海底两点间的距离,海底探测仪沿水平方向在两点进行测量,在同一个铅垂平面内. 海底探测仪测得两点的距离为海里.
(1)求的面积;
(2)求之间的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,若此时的气球高度是100m,则河流在B,C两地的宽度为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为
3
,将y=f(x)的图象向右平移
π
2
个单位长度得到函数y=g(x)的图象,求y=g(x)的单调增区间.
(2)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A-C)+cosB=
3
2
,b2=ac,求角B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

△ABC的角A,B,C的对边分别为a,b,c,已知asinA+bsinB-csinC=asinB.
(Ⅰ)求角C;
(Ⅱ)若a+b=5,S△ABC=
3
2
3
,求c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,若A=60°,a=2
3
,则
a+b+c
sinA+sinB+sinC
等于(  )
A.1B.2
3
C.4D.4
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,满足下列条件的三角形有两个的是(      ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·北京海淀区模拟]一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继
续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC中,若sinA<cosB,则△ABC为
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定

查看答案和解析>>

同步练习册答案