精英家教网 > 高中数学 > 题目详情

【题目】设数列的前n项和为

1)求证:数列是等比数列;

2)若,是否存在q的某些取值,使数列中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由.

3)若,是否存在,使数列中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由.

【答案】解:(1)见详解;(2)不存在;(3)不存在

【解析】

1)由前项和公式,结合求出,进而可得出结论成立;

2)根据,不妨设,两边同除以,再结合条件,即可得出结论;

3)同(2),先设,当,结合条件验证不成立即可.

1n=1时,

时,n=1也符合)

,即数列是等比数列.

2)若

可设,两边同除以得:

因为左边能被q整除,右边不能被q整除,因此满足条件的q不存在.

3)若

可设 不成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天或每月行走的步数,同时也可以和其他用户进行运动量的或点赞.加入微信运动后,为了让自己的步数能领先于朋友,人们运动的积极性明显增强,下面是某人20181月至201811月期间每月跑步的平均里程(单位:十公里)的数据,绘制了下面的折线图.

根据折线图,下列结论正确的是(

A. 月跑步平均里程的中位数为月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在

D. 月至月的月跑步平均里程相对于月至月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下面四个命题:

,则的逆否命题为,则

②命题:,若,则,用反证法证明时应假设.

③命题存在,使得,则:任意,都有

④若为假命题,则均为假命题,其中真命题个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的普通方程为,直线的参数方程为为参数),其中.以坐标为极点,以轴非负半轴为极轴,建立极坐标系.

1)求曲线的极坐标方程和直线的普通方程;

2)设点的极坐标方程为,直线的交点分别为.当为等腰直角三角形时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在三棱锥中,平面平面ABC,且

1)若点DBP上的一动点,求证:

2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为为参数),交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)设点;若成等比数列,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上的一点,其焦点为点,且抛物线在点处的切线交圆于不同的两点.

1)若点,求的值;

2)设点为弦的中点,焦点关于圆心的对称点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当x[0π]时,f(x)≥0恒成立,求实数a的取值范围;(参考数据:sin1≈0.84)

2)当a=1时,数列{an}满足:0<an<1=f(an),求证:{an}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如图的频率分

布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.

(3)若从样本中数学成绩在两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.

查看答案和解析>>

同步练习册答案