精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,以O为圆心的圆与直线x-
3
y=4
相切.
(Ⅰ)求圆O的方程;
(Ⅱ)圆O与x轴相交于A,B两点,圆O内的动点P使|PA|,|PO|,|PB|成等比数列,求
PA
PB
的取值范围;
(Ⅲ)已知D,E,F是圆O上任意三点,动点M满足
OM
OD
OE
+(1-2λ)
OF
,λ=R,问点M的轨迹是否一定经过△DEF的重心(重心为三角形三条中线的交点),并证明你的结论.
分析:(I)利用圆心到直线的距离求圆的半径,可得圆的标准方程;
(II)根据圆的方程求出A、B的坐标,利用|PA|,|PO|,|PB|成等比数列可得P点的坐标满足的条件,结合P是圆内的点,求出
PA
PB
的取值范围;
(III)根据动点M满足
OM
OD
OE
+(1-2λ)
OF
,设DE的中点为N,利用向量运算可得
FM
=2λ
FN
,说明点M的轨迹是△DEF的中线FN所在的直线,即轨迹一定经过△DEF的重心.
解答:解:(Ⅰ)依题意,圆O的半径r等于原点O到直线x-
3
y=4
的距离,
即r=
4
1+3
=2,∴圆O的方程为x2+y2=4.
(Ⅱ)不妨设A(x1,0),B(x2,0),x1<x2,令y=0得x2=4,
∴A(-2,0),B(2,0),
设P(x,y),由|PA|、|PO|、|PB|成等比数列,即:
(x+2)2+y2
×
(x-2)2+y2
=x2+y2

化简得:x2-y2=2,
PA
PB
=(-2-x,-y)•(2-x,-y)=x2-4+y2
∵x2-y2=2
PA
PB
=2y2-2,
由于点P在圆O内,故
x2+y2<4
x2-y2=2
,由此得y2<1.
∴-2≤
PA
PB
=2y2-2<0,
PA
PB
的取值范围是[-2,0);
(Ⅲ)设DE的中点为N,则
OD
OE
=2
ON

OM
OD
OE
+(1-2λ)
OF
,λ∈R,
OM
=2λ(
ON
-
OF
)+
OF

OM
-
OF
=2λ(
ON
-
OF
),
FM
=2λ
FN

∴F,N,M三点共线,
即点M的轨迹是△DEF的中线FN所在的直线,
故点M的轨迹一定经过△DEF的重心.
点评:本题考查了圆的标准方程,直线与圆的位置关系,考查了向量的数乘运算与数量积运算,考查了向量在几何中的应用,体现了数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案