精英家教网 > 高中数学 > 题目详情

【题目】已知直三棱柱中,为等腰直角三角形,,且分别为的中点.

(1)求证:直线平面

(2)求与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】

(1) 根据直线与平面平行的判定定理可知,只要在平面ABC里面找到一条直线与DE平行即可,过DE构造平行四边形,使其与平面ABC相交,则可得DE与交线平行,所以进一步可得DE∥平面ABC

(2) 以点A为坐标原点,如图建立空间直角坐标系Oxyz求出直线的方向向量,平面的法向量,代入公式,即可得到结果.

(1)AB的中点为G,连接DGCG,则

四边形DGCE为平行四边形,∴DEGC,又DEABCGCABCDE∥平面ABC

(2)以点A为坐标原点,的方向为轴的正方向建立空间直角坐标系,

,则,,,设平面的法向量

,令,则.

与平面所成的角为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数),且是它的极值点.

(1)求的值;

(2)求上的最大值;

(3)设,证明:对任意 都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)讨论的单调性;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中,已知AB=2,

E、F分别为上的点,且.

(1)求证:BE⊥平面ACF;

(2)求点E到平面ACF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4男3女站成一排,求满足下列条件的排法共有多少种?

任何两名女生都不相邻,有多少种排法?

男甲不在首位,男乙不在末位,有多少种排法?

男生甲、乙、丙顺序一定,有多少种排法?

男甲在男乙的左边不一定相邻有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,一个长轴端点为,离心率,过P分别作斜率为的直线PAPB,交椭圆于点AB

1求椭圆的方程;

2,则直线AB是否经过某一定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·吉林期末]一个袋中装有6个大小形状完全相同的球,球的编号分别为1,2,3,4,5,6.

(1)从袋中随机抽取两个球,求取出的球的编号之和为6的概率;

(2)先后有放回地随机抽取两个球,两次取的球的编号分别记为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn

(1)求an及Sn

(2)令bn(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案