【题目】已知直三棱柱中,为等腰直角三角形,,且,分别为,,的中点.
(1)求证:直线平面;
(2)求与平面所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1) 根据直线与平面平行的判定定理可知,只要在平面ABC里面找到一条直线与DE平行即可,过DE构造平行四边形,使其与平面ABC相交,则可得DE与交线平行,所以进一步可得DE∥平面ABC;
(2) 以点A为坐标原点,如图建立空间直角坐标系O﹣xyz,求出直线的方向向量,平面的法向量,代入公式,即可得到结果.
(1)设AB的中点为G,连接DG,CG,则,
四边形DGCE为平行四边形,∴DE∥GC,又DEABC,GCABC∴DE∥平面ABC.
(2)以点A为坐标原点,的方向为轴的正方向建立空间直角坐标系,
设,则,,,设平面的法向量,
则,令,则.
设与平面所成的角为,
所以
科目:高中数学 来源: 题型:
【题目】某二手交易市场对某型号的二手汽车的使用年数()与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
销售价格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)试求关于的回归直线方程.
(参考公式:,)
(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4男3女站成一排,求满足下列条件的排法共有多少种?
任何两名女生都不相邻,有多少种排法?
男甲不在首位,男乙不在末位,有多少种排法?
男生甲、乙、丙顺序一定,有多少种排法?
男甲在男乙的左边不一定相邻有多少种不同的排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,一个长轴端点为,离心率,过P分别作斜率为的直线PA,PB,交椭圆于点A,B。
(1)求椭圆的方程;
(2)若,则直线AB是否经过某一定点?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·吉林期末]一个袋中装有6个大小形状完全相同的球,球的编号分别为1,2,3,4,5,6.
(1)从袋中随机抽取两个球,求取出的球的编号之和为6的概率;
(2)先后有放回地随机抽取两个球,两次取的球的编号分别记为和,求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.
(1)求an及Sn;
(2)令bn=(n∈N*),求数列{bn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com