12£®ÒÑÖªÍÖÔ²${C_1}£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÇÒF2ΪÅ×ÎïÏß${C_2}£º{y^2}=2px$µÄ½¹µã£¬C2µÄ×¼Ïßl±»C1ºÍÔ²x2+y2=a2½ØµÃµÄÏÒ³¤·Ö±ðΪ$2\sqrt{2}$ºÍ4£®
£¨1£©ÇóC1ºÍC2µÄ·½³Ì£»
£¨2£©Ö±Ïßl1¹ýF1ÇÒÓëC2²»Ïཻ£¬Ö±Ïßl2¹ýF2ÇÒÓël1ƽÐУ¬Èôl1½»C1ÓÚA£¬B£¬l2½»C1½»ÓÚC£¬D£¬ÇÒÔÚxÖáÉÏ·½£¬ÇóËıßÐÎAF1F2CµÄÃæ»ýµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÓÉÍÖÔ²¼°Å×ÎïÏßµÄÐÔÖÊ£¬Áз½³Ì×éÇóµÃa£¬bºÍcµÄÖµ£¬¼´¿ÉÇóµÃC1ºÍC2µÄ·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ì£¬´úÈëÅ×ÎïÏߺÍÍÖÔ²·½³Ì£¬ÇóµÃØ­ABØ­£¬ÔòABÓëCD¼äµÄ¾àÀëΪ$\frac{4}{{\sqrt{{t^2}+1}}}$£¬ÀûÓÃÍÖÔ²µÄ¶Ô³ÆÐÔ¼°º¯Êýµ¥µ÷ÐÔ¼´¿ÉÇóµÃËıßÐÎAF1F2CµÄÃæ»ýµÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÅ×ÎïÏßµÄ×¼Ïß·½³Ìx=-$\frac{p}{2}$£¬c=$\frac{p}{2}$£¬
C2µÄ×¼Ïßl±»C1ºÍÔ²x2+y2=a2½ØµÃµÄÏÒ³¤·Ö±ðΪ$2\sqrt{2}$ºÍ4£¬
$\left\{\begin{array}{l}\frac{{2{b^2}}}{a}=2\sqrt{2}\\ 2b=4\end{array}\right.$£¬µÃ$a=2\sqrt{2}£¬b=c=2£¬p=4$£¬
¡àC1ºÍC2µÄ·½³Ì·Ö±ðΪ$\frac{x^2}{8}+\frac{y^2}{4}=1£¬{y^2}=8x$£®
£¨2£©ÓÉÌâÒ⣬ABµÄбÂʲ»Îª0£¬ÉèAB£ºx=ty-2£¬
ÓÉ$\left\{\begin{array}{l}x=ty-2\\{y^2}=8x\end{array}\right.$£¬µÃy2-8ty+16=0£¬¡÷=64t2-64¡Ü0£¬µÃt2¡Ü1£¬
ÓÉ$\left\{\begin{array}{l}x=ty-2\\{x^2}+2{y^2}-8=0\end{array}\right.$£¬µÃ£¨t2+1£©y2-4ty-4=0£¬
$|{AB}|=2a+e£¨{x_1}+{x_2}£©=\frac{{\sqrt{2}}}{2}t£¨{y_1}+{y_2}£©+2\sqrt{2}=\frac{{4\sqrt{2}£¨{t^2}+1£©}}{{{t^2}+2}}$£¬ABÓëCD¼äµÄ¾àÀëΪ$\frac{4}{{\sqrt{{t^2}+1}}}$£¬
ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ABDCΪƽÐÐËıßÐΣ¬${S_{¡÷{F_1}{F_2}C}}=\frac{1}{2}{S_{ABDC}}=\frac{1}{2}•\frac{{4\sqrt{2}£¨{t^2}+1£©}}{{{t^2}+2}}•\frac{4}{{\sqrt{{t^2}+1}}}=\frac{{8\sqrt{2}\sqrt{{t^2}+1}}}{{{t^2}+2}}$£¬
Éè$\sqrt{{t^2}+1}=m£¬m¡Ê[{1£¬\sqrt{2}}]$£¬
${S_{A{F_1}{F_2}C}}=\frac{{8\sqrt{2}}}{{m+\frac{1}{m}}}¡Ê[\frac{16}{3}£¬4\sqrt{2}]$£®
¼´ÎªËıßÐÎAF1F2CµÄÃæ»ýµÄÈ¡Öµ·¶Î§£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²¼°Å×ÎïÏߵķ½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©ÒÑÖª${log_2}£¨{16-{2^x}}£©=x$£¬ÇóxµÄÖµ
£¨2£©¼ÆË㣺${£¨{-\frac{1}{{\sqrt{5}-\sqrt{3}}}}£©^0}+{81^{0.75}}-\sqrt{{{£¨{-3}£©}^2}}¡Á{8^{\frac{2}{3}}}+{log_5}7•{log_7}25$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®º¯Êýy=tan£¨2x+$\frac{¦Ð}{4}$£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨$\frac{k¦Ð}{2}$-$\frac{3¦Ð}{8}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{8}$£©£¬k¡ÊZ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈôÖ±Ïß2ax-by+4=0£¨a£¾0£¬b£¾0£©±»Ô²x2+y2+2x-4y+1=0½ØµÃµÄÏÒ³¤Îª4£¬ÔòabµÄ×î´óÖµÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Îíö²ÌìÆø¶ÔÈËÌ彡¿µÓк¦£¬Ó¦¶ÔÎíö²ÎÛȾ¡¢¸ÄÉÆ¿ÕÆøÖÊÁ¿Êǵ±Ç°µÄÊ×ÒªÈÎÎñÊÇ¿ØÖÆPM2.5£¬Òª´Óѹ¼õȼú¡¢Ñϸñ¿Ø²ú¡¢µ÷Õû²úÒµ¡¢Ç¿»¯¹ÜÀí¡¢Áª·ÀÁª¿Ø¡¢ÒÀ·¨ÖÎÀíµÈ·½Ãæ²ÉÈ¡ÖØ´ó¾Ù´ë£¬¾Û½¹ÖصãÁìÓò£¬Ñϸñ¿¼ºËÖ¸±ê£®Ä³Ê¡»·±£²¿ÃÅΪ¼ÓÇ¿»·¾³Ö´·¨¼à¹Ü£¬ÅÉDzËĸö²»Í¬µÄר¼Ò×é¶ÔA£¬B£¬CÈý¸ö³ÇÊнøÐÐÎíö²ÂäʵÇé¿ö³é²é£®
£¨1£©Èôÿ¸öר¼Ò×éËæ»úÑ¡È¡Ò»¸ö³ÇÊУ¬Ëĸöר¼Ò×éÑ¡È¡µÄ³ÇÊпÉÒÔÏàͬ£¬Ò²¿ÉÒÔ²»Í¬£¬ÇÒÿ¸ö³ÇÊж¼±ØÐëÓÉר¼Ò×éÑ¡È¡£¬ÇóA³ÇÊÐÇ¡ÓÐÁ½ÓÐר¼Ò×éÑ¡È¡µÄ¸ÅÂÊ£»
£¨2£©ÔÚ¼ì²éµÄ¹ý³ÌÖÐר¼Ò×é´ÓA³ÇÊеľÓÃñÖÐËæ»ú³éÈ¡³ö400È˽øÐÐÊÇ·ñ»§Íâ×÷ÒµÈËÔ±ÓëÊÇ·ñ»¼ÓкôÎüµÀ¼²²¡½øÐÐÁËͳ¼Æ£¬Í³¼Æ½á¹ûÈçÏ£º
 ·ÖÀà »¼ºôÎüµÀ¼²²¡ Î´»¼ºôÎüµÀ¼²²¡ ºÏ¼Æ
 »§Íâ×÷ÒµÈËÔ± 40 60 100
 
 ·Ç»§Íâ×÷ÒµÈËÔ±
 60 240 300
 ºÏ¼Æ 100 300 400
¸ù¾ÝÉÏÊöµÄͳ¼Æ½á¹û£¬ÎÒÃÇÊÇ·ñÓг¬¹ý99%µÄ°ÑÎÕÈÏΪ¡°»§Íâ×÷Òµ¡±Óë¡°»¼ÓкôÎüµÀ¼²²¡¡±Óйأ¿
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
 P£¨K2¡Ýk£© 0.50 0.400.25 0.15 0.10  0.05 0.025 0.010 0.005 0.001
 k 0.4550.708 1.323 0.072 2.706 3.8415.024 6.635 7.879 10.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Éètan£¨¦Ð+¦Á£©=2£¬Ôò$\frac{{sin£¨{¦Á-¦Ð}£©+cos£¨{¦Ð-¦Á}£©}}{{sin£¨{¦Ð+¦Á}£©-cos£¨{¦Ð-¦Á}£©}}$=£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®1C£®3D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÅ×ÎïÏßC£ºx2=4y£¬MΪֱÏßl£ºy=-1ÉÏÈÎÒâÒ»µã£¬¹ýµãM×÷Å×ÎïÏßCµÄÁ½ÌõÇÐÏßMA£¬MB£¬Çеã·Ö±ðΪA£¬B£®
£¨1£©µ±MµÄ×ø±êΪ£¨0£¬-1£©Ê±£¬Çó¹ýM£¬A£¬BÈýµãµÄÔ²µÄ·½³Ì£»
£¨2£©ÈôP£¨x0£¬y0£©ÊÇCÉϵÄÈÎÒâµã£¬ÇóÖ¤£ºPµã´¦µÄÇÐÏßµÄбÂÊΪ$k=\frac{1}{2}{x_0}$£»
£¨3£©Ö¤Ã÷£ºÒÔABΪֱ¾¶µÄÔ²ºã¹ýµãM£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{ln£¨-x£©£¬x£¼0}\\{\frac{x}{{e}^{x-1}}£®x¡Ý0}\end{array}\right.$£¬Èô·½³Ì[f£¨x£©]2+mf£¨x£©-m£¨m+1£©=0ÓÐËĸö²»µÈµÄʵÊý¸ù£¬ÔòmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®-1¡Üm£¼$\frac{4}{5}$B£®m¡Ü-1»òm£¾1C£®m=-1»òm£¾1D£®m=-1»ò0£¼m£¼1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª$cos£¨\frac{¦Ð}{6}+x£©=\frac{1}{3}$£¬Ôò$cos£¨\frac{5¦Ð}{6}-x£©$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$-\frac{1}{3}$C£®$-\frac{{2\sqrt{2}}}{3}$D£®$\frac{{2\sqrt{2}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸