·ÖÎö £¨1£©ÓÉÍÖÔ²¼°Å×ÎïÏßµÄÐÔÖÊ£¬Áз½³Ì×éÇóµÃa£¬bºÍcµÄÖµ£¬¼´¿ÉÇóµÃC1ºÍC2µÄ·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ì£¬´úÈëÅ×ÎïÏߺÍÍÖÔ²·½³Ì£¬ÇóµÃØABØ£¬ÔòABÓëCD¼äµÄ¾àÀëΪ$\frac{4}{{\sqrt{{t^2}+1}}}$£¬ÀûÓÃÍÖÔ²µÄ¶Ô³ÆÐÔ¼°º¯Êýµ¥µ÷ÐÔ¼´¿ÉÇóµÃËıßÐÎAF1F2CµÄÃæ»ýµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÅ×ÎïÏßµÄ×¼Ïß·½³Ìx=-$\frac{p}{2}$£¬c=$\frac{p}{2}$£¬
C2µÄ×¼Ïßl±»C1ºÍÔ²x2+y2=a2½ØµÃµÄÏÒ³¤·Ö±ðΪ$2\sqrt{2}$ºÍ4£¬
$\left\{\begin{array}{l}\frac{{2{b^2}}}{a}=2\sqrt{2}\\ 2b=4\end{array}\right.$£¬µÃ$a=2\sqrt{2}£¬b=c=2£¬p=4$£¬
¡àC1ºÍC2µÄ·½³Ì·Ö±ðΪ$\frac{x^2}{8}+\frac{y^2}{4}=1£¬{y^2}=8x$£®
£¨2£©ÓÉÌâÒ⣬ABµÄбÂʲ»Îª0£¬ÉèAB£ºx=ty-2£¬
ÓÉ$\left\{\begin{array}{l}x=ty-2\\{y^2}=8x\end{array}\right.$£¬µÃy2-8ty+16=0£¬¡÷=64t2-64¡Ü0£¬µÃt2¡Ü1£¬
ÓÉ$\left\{\begin{array}{l}x=ty-2\\{x^2}+2{y^2}-8=0\end{array}\right.$£¬µÃ£¨t2+1£©y2-4ty-4=0£¬
$|{AB}|=2a+e£¨{x_1}+{x_2}£©=\frac{{\sqrt{2}}}{2}t£¨{y_1}+{y_2}£©+2\sqrt{2}=\frac{{4\sqrt{2}£¨{t^2}+1£©}}{{{t^2}+2}}$£¬ABÓëCD¼äµÄ¾àÀëΪ$\frac{4}{{\sqrt{{t^2}+1}}}$£¬
ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ABDCΪƽÐÐËıßÐΣ¬${S_{¡÷{F_1}{F_2}C}}=\frac{1}{2}{S_{ABDC}}=\frac{1}{2}•\frac{{4\sqrt{2}£¨{t^2}+1£©}}{{{t^2}+2}}•\frac{4}{{\sqrt{{t^2}+1}}}=\frac{{8\sqrt{2}\sqrt{{t^2}+1}}}{{{t^2}+2}}$£¬
Éè$\sqrt{{t^2}+1}=m£¬m¡Ê[{1£¬\sqrt{2}}]$£¬
${S_{A{F_1}{F_2}C}}=\frac{{8\sqrt{2}}}{{m+\frac{1}{m}}}¡Ê[\frac{16}{3}£¬4\sqrt{2}]$£®
¼´ÎªËıßÐÎAF1F2CµÄÃæ»ýµÄÈ¡Öµ·¶Î§£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²¼°Å×ÎïÏߵķ½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éΤ´ï¶¨Àí£¬ÏÒ³¤¹«Ê½£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
·ÖÀà | »¼ºôÎüµÀ¼²²¡ | δ»¼ºôÎüµÀ¼²²¡ | ºÏ¼Æ |
»§Íâ×÷ÒµÈËÔ± | 40 | 60 | 100 |
·Ç»§Íâ×÷ÒµÈËÔ± | 60 | 240 | 300 |
ºÏ¼Æ | 100 | 300 | 400 |
P£¨K2¡Ýk£© | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 0.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{3}$ | B£® | 1 | C£® | 3 | D£® | -1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | -1¡Üm£¼$\frac{4}{5}$ | B£® | m¡Ü-1»òm£¾1 | C£® | m=-1»òm£¾1 | D£® | m=-1»ò0£¼m£¼1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{3}$ | B£® | $-\frac{1}{3}$ | C£® | $-\frac{{2\sqrt{2}}}{3}$ | D£® | $\frac{{2\sqrt{2}}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com