【题目】如图,在平面多边形中,是边长为2的正方形,为等腰梯形,为的中点,且,,现将梯形沿折叠,使平面平面.
(1)求证:平面;
(2)求直线与平面所成角的大小.
科目:高中数学 来源: 题型:
【题目】如图,已知圆柱内有一个三棱锥,为圆柱的一条母线,,为下底面圆的直径,,.
(1)在圆柱的上底面圆内是否存在一点,使得平面?证明你的结论.
(2)设点为棱的中点,,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,AD=AP=3,点M是棱PD的中点.
(1)求二面角M—AC—D的余弦值;
(2)点N是棱PC上的点,已知直线MN与平面ABCD所成角的正弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1﹣bn)an}的前n项和为2n2+n.
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】桥牌是一种高雅、文明、竞技性很强的智力性游戏.近年来,在中国桥牌协会“桥牌进校园”活动的号召下,全国各地中小学纷纷积极加入到青少年桥牌推广的大营中.为了了解学生对桥牌这项运动的兴趣,某校从高一学生中随机抽取了200名学生进行调查,经统计男生与女生的人数之比为2:3,男生中有50人对桥牌有兴趣,女生中有20人对桥牌不感兴趣.
(1)完成2×2列联表,并回答能否有的把握认为“该校高一学生对桥牌是否感兴趣与性别有关”?
感兴趣 | 不感兴趣 | 合计 | |
男 | 50 | —— | —— |
女 | —— | 20 | —— |
合计 | —— | —— | 200 |
(2)从被调查的对桥牌有兴趣的学生中利用分层抽样抽取6名学生,再从6名学生中抽取2名学生作为桥牌搭档参加双人赛.求抽到一名男生与一名女生的概率.
附:参考公式,其中.
临界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,分别为椭圆的左右焦点,点为椭圆上的一动点,面积的最大值为2.
(1)求椭圆的方程;
(2)直线与椭圆的另一个交点为,点,证明:直线与直线关于轴对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆:过点,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)如图,设直线与圆相切与点,与椭圆相切于点,当为何值时,线段长度最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线:(为参数),曲线:(为参数),且,点P为曲线与的公共点.
(1)求动点P的轨迹方程;
(2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com