精英家教网 > 高中数学 > 题目详情

【题目】如图,平面平面是等腰直角三角形,,四边形是直角梯形,分别为的中点.

(I)求证:平面

(II)求直线和平面所成角的正弦值

(III)能否在上找一点使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由

【答案】(I)见解析;(II);(III)见解析.

【解析】试题分析:(1)先建立空间直角坐标系,利用法向量证明OD//平面ABC,说明和平面ABC的法向量垂直即可;(2)设直线CD与平面ODM所成角为θ,求出平面ODM法向量,则;(3)设EM上一点N满足,平面ABDE法向量不存在使不存在满足题意的点N.

试题解析:以B为原点,BCx轴,BAy轴,BDz轴,建立空间直角坐标系

1)平面ABC的法向量

∴OD//平面ABC

2)设平面ODM法向量为,直线CD与平面ODM所成角为θ

.

3)设EM上一点N满足,

平面ABDE法向量

不存在使不存在满足题意的点N.

(传统方法参照给分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点及椭圆过点的动直线与椭圆相交于 两点.

1)若线段中点的横坐标是求直线的方程;

(2)设点的坐标为求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,四边形为平行四边形, 平面,且 .

(Ⅰ)求证:平面平面

(Ⅱ)若直线与平面所成的角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面,三角形为等边三角形, ,且

1)求证: 平面

2)求证:平面平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是(  )

A.在棱AD上存在点M,使AD⊥平面PMB
B.异面直线AD与PB所成的角为90°
C.二面角P﹣BC﹣A的大小为45°
D.BD⊥平面PAC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知圆的圆心在直线上,且过点与直线相切.

)求圆的方程

)设直线与圆相交于两点.求实数的取值范围.

的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列方程中,没有实数根的是(  )
A.2x+3=0
B.﹣1=0
C.
D.+x+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为,第二次朝下面的数字为.表示一个基本事件.

请写出所有基本事件;

求满足条件“”为整数的事件的概率;

求满足条件“”的事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

同步练习册答案