精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=1nx+x,g(x)=6-x.
(1)证明:函数f(x)的图象与函数g(x)的图象有且仅有一个交点;
(2)在(1)的条件下,求该交点横坐标所在的一个区间,使这个区间的长度不超过$\frac{1}{8}$.

分析 (1)方法一:根据图象的交点即是方程的解,转化为方程的解得问题即可.方法二,构造函数,求证只有一个零点;
(2)由(1)知,该零点在区间(2,3)上,从而利用二分法确定区间.

解答 解:(1)方法一:∵f(x)=1nx+x,g(x)=6-x
当f(x)=g(x),
∴lnx+x=6-x,
即lnx=6-2x,
分别画出y=lnx和y=-2x+6的图象,如图所示,
由图象可知,有且只有一个交点,
所以lnx=6-2x只有一个解,
所以f(x)=g(x)只有一个解,
所以函数f(x)的图象与函数g(x)的图象有且仅有一个交点;
方法二:f(x)=lnx+x,g(x)=6-x.
h(x)=f(x)-g(x)=lnx+2x-6,
函数h(x)=lnx+2x-6在其定义域(0,+∞)上是增函数,
又∵h(2)=ln2-2<0,f(3)=ln3>0;
∴函数h(x)有且只有-个零点,
∴函数f(x)的图象与函数g(x)的图象有且仅有一个交点
(2)由(1)知,该零点在区间(2,3)上,
f($\frac{5}{2}$)=ln$\frac{5}{2}$-1<0,
故该零点在区间($\frac{5}{2}$,3)上,
f($\frac{11}{4}$)=ln$\frac{11}{4}$-$\frac{1}{2}$>0,
f($\frac{21}{8}$)=ln$\frac{21}{8}$-$\frac{3}{4}$>0,
故该零点在区间($\frac{20}{8}$,$\frac{21}{8}$)上.

点评 本题考查了函数的零点的个数的判断与二分法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若x>0,y>0,a>0,b>0,且$\frac{a}{x}$+$\frac{b}{y}$=1,则x+y的最小值为(  )
A.4$\sqrt{ab}$B.a+b+2$\sqrt{ab}$C.2(a+b)D.以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.指数函数y=f(x)的图象经过点(-2,$\frac{1}{4}$),那么f(4)•f(2)=64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=2${\;}^{{x}^{2}-2x+5}$的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x+$\frac{1}{x}$-2x+4,利用图象法判断该函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b∈R,比较a4+b4与a3b+ab3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若log4{2log2[1+log2(1+log2x)]}=$\frac{1}{2}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立,设数列{an}的前n项和为Sn=f(n).
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设bn=($\sqrt{3}$)${\;}^{{a}_{n}+5}$,cn=$\frac{6{{b}_{n}}^{2}+{b}_{n+1}-{b}_{n}}{{b}_{n}{b}_{n+1}}$,{cn}前n项和为Tn,Tn>n+m(n∈N*,n≥2)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两个平面垂直,下列说法中正确的有④.
①其中一个平面内的任意一条直线与另一个平面垂直
②其中一个平面的垂线一定与另一个平面平行
③若其中一个平面与第三个平面垂直,则另一个平面与第三个平面平行
④过其中一个平面内一个点且与另一个平面垂直的直线一定在第一个平面内.

查看答案和解析>>

同步练习册答案