精英家教网 > 高中数学 > 题目详情
19.已知椭圆C的两个焦点分别为F1(-$\sqrt{10}$,0),F2($\sqrt{10}$,0),且椭圆C过点P(3,2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.

分析 (Ⅰ)由题意设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,利用椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;
(Ⅱ)求出kOP=$\frac{2}{3}$,设与直线OP平行的直线方程为y=$\frac{2}{3}$x+m,联立直线和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,点到直线的距离公式和三角形的面积公式,结合基本不等式即可得到所求最大值.

解答 解:(Ⅰ)由题意设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,
∵椭圆C的两个焦点分别为F1(-$\sqrt{10}$,0),
F2($\sqrt{10}$,0),且椭圆C过点P(3,2),
由椭圆定义可得2a=$\sqrt{(3+\sqrt{10})^{2}+{2}^{2}}$+$\sqrt{(3-\sqrt{10})^{2}+{2}^{2}}$=6$\sqrt{2}$,即a=3$\sqrt{2}$,
∴b2=a2-c2=8,
则椭圆C的标准方程为$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{8}$=1;
(Ⅱ)由kOP=$\frac{2}{3}$,
设与直线OP平行的直线方程为y=$\frac{2}{3}$x+m,
联立$\left\{\begin{array}{l}{y=\frac{2}{3}x+m}\\{\frac{{x}^{2}}{18}+\frac{{y}^{2}}{8}=1}\end{array}\right.$,得8x2+12mx+9m2-72=0.
由判别式△=144m2-32(9m2-72)>0,解得0<|m|<4.
设A(x1,y1),B(x2,y2),则x1+x2=-$\frac{3}{2}$m,x1x2=$\frac{9{m}^{2}-72}{8}$,
|AB|=$\sqrt{1+\frac{4}{9}}$•$\sqrt{\frac{9}{4}{m}^{2}-\frac{9{m}^{2}-72}{2}}$=$\frac{\sqrt{13}}{3}$•$\frac{\sqrt{144-9{m}^{2}}}{2}$,
点O到直线AB的距离为d=$\frac{|m|}{\sqrt{1+\frac{4}{9}}}$=$\frac{3}{\sqrt{13}}$|m|,
即有△PAB面积为S=$\frac{1}{2}$|AB|d=$\frac{|m|\sqrt{144-9{m}^{2}}}{4}$=$\frac{\sqrt{9{m}^{2}(144-9{m}^{2})}}{12}$≤$\frac{\sqrt{(\frac{144}{2})^{2}}}{12}$=6.
当且仅当9m2=144-9m2,即m=±2$\sqrt{2}$时,取得最大值6.

点评 本题考查椭圆方程的求法,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及点到直线的距离公式,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=$\sqrt{-sinx}$+$\sqrt{tanx}$的定义域是{x|$2kπ+π≤x<2kπ+\frac{3π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=log2(x2-4x+5)的零点为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若关于x的函数y=(log${\;}_{\frac{1}{2}}$a)x是R上的减函数,则实数a的取值范围是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow a=(4,5cos(α+\;\frac{π}{6})),\overrightarrow b=(3,-4tan(α+\frac{π}{6})),\;α∈(0,\frac{π}{2}),\;\overrightarrow a⊥\overrightarrow b$,
(1)求|$\overrightarrow a-2\overrightarrow b|$;
(2)求$sin(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程
(Ⅱ)已知直线l:x=my+1与椭圆相交于A,B两点,记△ABP三条边所在直线的斜率的乘积为t,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点,上顶点分别为M、N,过其左焦点F作直线l垂直于x轴,且与椭圆在第二象限交于点P,$\overrightarrow{MN}$=λ$\overrightarrow{OP}$
(1)求证:a=$\sqrt{b}$;
(2)若椭圆的弦AB过点E(2,0)并与坐标轴不垂直,设点A关于x轴的对称点A,直线A1B与x轴交于点R(5,0),求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(-2,0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与圆F:(x-c)2+y2=9的一个交点,且圆心F是椭圆的一个焦点,
(1)求椭圆C的方程;
(2)过F的直线交圆与P、Q两点,连AP、AQ分别交椭圆与M、N点,试问直线MN是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-3,5),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{9\sqrt{34}}{34}$.

查看答案和解析>>

同步练习册答案