精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x),满足f(x-6)=-f(x),且在区间[0,3]上是增函数.若方程f(x)=m(m>0)在区间[-12,12]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=
-12
-12
分析:由条件“f(x-6)=-f(x)”得f(x+12)=f(x),说明此函数是周期函数,又是奇函数,f(x-6)=-f(x)=f(-x)得到对称轴方程,且在[0,3]上为增函数,由这些画出示意图,由图可解决问题.
解答:解:由f(x-6)=-f(x)得f(x+12)=f(x),故周期为12.
又因为f(x-6)=-f(x)=f(-x)
所以对称轴为x=3,
此函数是周期函数,又是奇函数,且在[0,3]上为增函数,
综合条件得函数的示意图,由图看出,
四个交点中两个交点的横坐标之和为2×(-9),
另两个交点的横坐标之和为2×3,
所以x1+x2+x3+x4=-12.
故答案为:-12.
点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案