精英家教网 > 高中数学 > 题目详情

已知函数f(x)=loga(a-kax)(a>0,且a≠1,k∈R).
(1)若f(x)的图象关于直线y=x对称,且f(2)=-2loga2,求a的值.
(2)当0<a<1时,若f(x)在[1,+∞)内恒有意义,求k的取值范围.

解:(1)∵y=loga(a-kax),∴ay=a-kax,∴x=
∴f(x)的反函数为: (4分)
∵f(x)的图象关于直线y=x对称,所以原函数与反函数是同一函数.
恒成立,(6分)
即:恒成立,(k2-1)ax+(1-k)a=0恒成立
,得:k=1,∴f(x)=loga(a-ax),(8分)
又∵f(2)=-2loga2,∴,∴
,∴a=,(10分)
(2)由a-kax>0得k<a1-x,设g(x)=a1-x
由于0<a<1,∴函数g(x)=a1-x在[1,+∞)上是单调递增函数.
∴g(x)min=a0=1,
由k<a1-x在[1,+∞)上恒成立得k<1.(15分)
分析:(1)由y=loga(a-kax),知ay=a-kax,x=,所以f(x)的反函数为:.由f(x)的图象关于直线y=x对称,知恒成立由此能求出a.
(2)由a-kax>0得k<a1-x,设g(x)=a1-x,由于0<a<1,知函数g(x)=a1-x在[1,+∞)上是单调递增函数.所以g(x)min=a0=1,由此能求出k的范围.
点评:本题考查对数函数的图象和性质,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案